Advertisement

Mycorrhizal Fungi: Biodiversity, Ecological Significance, and Industrial Applications

  • Dheeraj Pandey
  • Harbans Kaur Kehri
  • Ifra Zoomi
  • Ovaid Akhtar
  • Amit K. Singh
Chapter
Part of the Fungal Biology book series (FUNGBIO)

Abstract

Mycorrhizae (“fungus roots”) are mutualistic symbiotic associations between fungi and plants. Mycorrhizal association was found to be established between Ordovician and Devonian period. Mycorrhizal association is present in almost all ecosystems with a high degree of host specificity. About 40,000–50,000 fungal species form mycorrhizal association with nearly about 250,000 plant species. There are different types of mycorrhizal associations, namely, arbuscular mycorrhiza (71%), ectomycorrhiza (2%), orchid mycorrhiza (10%), ericoid mycorrhiza (1.4%), non-mycorrhizal association (7%), and habitat- and nutritional-dependent association (8%). These symbiotic associations play a key role in evolution of land plants in reducing and harsh environment at that time. These symbiotic associations provide up to 80% of N and P and also help in plant growth and fitness. There are a number of scientific evidences which have suggested that mycorrhizal fungi not only improve crop yield but also increase antioxidants, vitamins, and essential trace elements in plants. Additionally, various researchers around the globe have investigated the effect of mycorrhizal fungi on production of secondary metabolites. Furthermore, application of mycorrhizal fungi is presently reaching to an industrial stage supported by widespread applied researches and marketable applications emphasizing an eco-friendly and sustainable aspects.

Keywords

Application Arbuscular mycorrhiza Mutualism Mycorrhiza Remediation Stress 

Notes

Acknowledgments

The authors are thankful to the University Grants Commission (UGC), New Delhi, for providing financial assistance to carry out this study. Authors are also thankful to the head of Botany Department, University of Allahabad, for providing other facilities.

References

  1. Akiyama K, Hayashi H (2002) Arbuscular mycorrhizal fungus-promoted accumulation of two new triterpenoids in cucumber roots. Biosci Biotechnol Biochem 66:762–769Google Scholar
  2. Albrechtova J, Latr A, Nedorost L, Pokluda R, Posta K, Vosatka M (2012) Dual inoculation with mycorrhizal and saprotrophic fungi applicable in sustainable cultivation improves the yield and nutritive value of onion. Sci World J 2012:1. https://doi.org/10.1100/2012/374091Google Scholar
  3. Alghamdi SA (2017) Influence of mycorrhizal fungi on seed germination and growth in terrestrial and epiphytic orchids. Saudi J Biol Sci. https://doi.org/10.1016/j.sjbs.2017.10.021
  4. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399Google Scholar
  5. Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42Google Scholar
  6. Augé RM, Moore JL (2005) Arbuscular mycorrhizal symbiosis and plant drought resistance. Mycorrhiza: role and applications. Allied Publishers Limited, New Delhi, pp 136–157Google Scholar
  7. Bargagli R, Baldi F (1984) Mercury and methyl mercury in higher fungi and their relation with the substrata in a cinnabar mining area. Chemosphere 13(9):1059–1071Google Scholar
  8. Baslam M, Goicoechea N (2012) Water deficit improved the capacity of arbuscular mycorrhizal fungi (AMF) for inducing the accumulation of antioxidant compounds in lettuce leaves. Mycorrhiza 22(5):347–359Google Scholar
  9. Bender SF, Conen F, Van der Heijden MG (2015) Mycorrhizal effects on nutrient cycling, nutrient leaching and N2O production in experimental grassland. Soil Biol Biochem 80:283–292Google Scholar
  10. Bennett AE, Bever JD, Bowers MD (2009) Arbuscular mycorrhizal fungal species suppress inducible plant responses and alter defensive strategies following herbivory. Oecologia 160(4):771–779Google Scholar
  11. Bhargava A, Carmona FF, Bhargava M, Srivastava S (2012) Approaches for enhanced phytoextraction of heavy metals. J Environ Manag 105:103–120Google Scholar
  12. Blackwell M (2011) The Fungi: 1, 2, 3 … 5.1 million species? Am J Bot 98(3):426–438Google Scholar
  13. Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis. Nat Commun 1:48Google Scholar
  14. Bonfante P, Selosse MA (2010) A glimpse into the past of land plants and of their mycorrhizal affairs: from fossils to evo-devo. New Phytol 186(2):267–270Google Scholar
  15. Bradley R, Burt AJ, Read DJ (1982) The biology of mycorrhiza in the Ericaceae. New Phytol 91(2):197–209Google Scholar
  16. Bruisson S, Maillot P, Schellenbaum P, Walter B, Gindro K, Deglène-Benbrahim L (2016) Arbuscular mycorrhizal symbiosis stimulates key genes of the phenylpropanoid biosynthesis and stilbenoid production in grapevine leaves in response to downy mildew and grey mould infection. Phytochemistry 131:92–99Google Scholar
  17. Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154(2):275–304Google Scholar
  18. Brundrett MC (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320(1–2):37–77Google Scholar
  19. Brundrett MC (2017) Global diversity and importance of mycorrhizal and nonmycorrhizal plants. In: Biogeography of mycorrhizal symbiosis. Springer, Cham, pp 533–556Google Scholar
  20. Brundrett MC, Tedersoo L (2018) Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol 220:1108Google Scholar
  21. Bücking H, Heyser W (1999) Elemental composition and function of polyphosphates in ectomycorrhizal fungi–an X-ray microanalytical study. Mycol Res 103(1):31–39Google Scholar
  22. Cairney J, Burke RM (1998) Extracellular enzyme activities of the ericoid mycorrhizal endophyte: their likely roles in decomposition of dead plant tissue in soil hymenoscyphus ericae: their likely roles in decomposition of dead plant tissue in soil (read) Korf & Kernan: their likely roles in decomposition of dead plant tissue in soil. Plant Soil 205(2):181–192Google Scholar
  23. Candelone JP, Hong S, Pellone C, Boutron CF (1995) Post-Industrial Revolution changes in large-scale atmospheric pollution of the northern hemisphere by heavy metals as documented in central Greenland snow and ice. J Geophys Res Atmos 100(D8):16605–16616Google Scholar
  24. Clark RB, Zeto SK (2000) Mineral acquisition by arbuscular mycorrhizal plants. J Plant Nutr 23(7):867–902Google Scholar
  25. Clemmensen KE, Bahr A, Ovaskainen O, Dahlberg A, Ekblad A, Wallander H, Lindahl BD (2013) Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339(6127):1615–1618Google Scholar
  26. Cosme M, Franken P, Mewis I, Baldermann S, Wurst S (2014) Arbuscular mycorrhizal fungi affect glucosinolate and mineral element composition in leaves of Moringa oleifera. Mycorrhiza 24(7):565–570Google Scholar
  27. Cullings KW (1996) Single phylogenetic origin of ericoid mycorrhizae within the Ericaceae. Can J Bot 74(12):1896–1909Google Scholar
  28. Davey ML, Currah RS (2006) Interactions between mosses (Bryophyta) and fungi. Botany 84(10):1509–1519Google Scholar
  29. Dickie IA, Bolstridge N, Cooper JA, Peltzer DA (2010) Co-invasion by Pinus and its mycorrhizal fungi. New Phytol 187(2):475–484Google Scholar
  30. Dickson S (2004) The Arum–Paris continuum of mycorrhizal symbioses. New Phytol 163(1):187–200Google Scholar
  31. Dighton J (2016) Fungi in ecosystem processes, vol 31. 2nd edn. CRC Press, Boca RatonGoogle Scholar
  32. Dotzler N, Walker C, Krings M, Hass H, Kerp H, Taylor TN, Agerer R (2009) Acaulosporoid glomeromycotan spores with a germination shield from the 400-million-year-old Rhynie chert. Mycol Prog 8(1):9–18Google Scholar
  33. Egerton-Warburton L, Allen MF (2001) Endo-and ectomycorrhizas in Quercus agrifolia Nee. (Fagaceae): patterns of root colonization and effects on seedling growth. Mycorrhiza 11(6):283–290Google Scholar
  34. Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104(7):1263–1280Google Scholar
  35. Feng G, Zhang F, Li X, Tian C, Tang C, Rengel Z (2002) Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12(4):185–190Google Scholar
  36. Finlay RD, Ek H, Odham G, Söderström B (1988) Mycelial uptake, translocation and assimilation of nitrogen from 15N-labelled ammonium by Pinus sylvestris plants infected with four different ectomycorrhizal fungi. New Phytol 110(1):59–66Google Scholar
  37. Frank B (1885) Ueber die auf Wurzelsymbiose beruhende Ernahrung gewisser Baume durch unterirdische Pilze. Ber. Dt. Bot Ges 3:128–145Google Scholar
  38. Gachomo E, Allen JW, Pfeffer PE, Govindarajulu M, Douds DD, Jin H, Bücking H (2009) Germinating spores of Glomus intraradices can use internal and exogenous nitrogen sources for de novo biosynthesis of amino acids. New Phytol 184(2):399–411Google Scholar
  39. Gast CH, Jansen E, Bierling J, Haanstra L (1988) Heavy metals in mushrooms and their relationship with soil characteristics. Chemosphere 17(4):789–799Google Scholar
  40. Gemma JN, Koske RE, Flynn T (1992) Mycorrhizae in Hawaiian pteridophytes: occurrence and evolutionary significance. Am J Bot 79(8):843–852Google Scholar
  41. Gianinazzi S, Gollotte A, Binet MN, van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20(8):519–530Google Scholar
  42. Giron D, Frago E, Glevarec G, Pieterse CM, Dicke M (2013) Cytokinins as key regulators in plant–microbe–insect interactions: connecting plant growth and defence. Funct Ecol 27(3):599–609Google Scholar
  43. Göhre V, Paszkowski U (2006) Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223(6):1115–1122Google Scholar
  44. Grunwald U, Guo W, Fischer K, Isayenkov S, Ludwig-Müller J, Hause B, Franken P (2009) Overlapping expression patterns and differential transcript levels of phosphate transporter genes in arbuscular mycorrhizal, Pi-fertilised and phytohormone-treated Medicago truncatula roots. Planta 229(5):1023–1034Google Scholar
  45. Hawkins HJ, Johansen A, George E (2000) Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi. Plant Soil 226(2):275–285Google Scholar
  46. Hazzoumi Z, Moustakime Y, Joutei KA (2015) Effect of arbuscular mycorrhizal fungi (AMF) and water stress on growth, phenolic compounds, glandular hairs, and yield of essential oil in basil (Ocimum gratissimum L). Chem Biol Technol Agric 2(1):10Google Scholar
  47. Helgason T, Fitter A (2005) The ecology and evolution of the arbuscular mycorrhizal fungi. Mycologist 19(3):96–101Google Scholar
  48. Hibbett DS, Matheny PB (2009) The relative ages of ectomycorrhizal mushrooms and their plant hosts estimated using Bayesian relaxed molecular clock analyses. BMC Biol 7(1):13Google Scholar
  49. Hijikata N, Murase M, Tani C, Ohtomo R, Osaki M, Ezawa T (2010) Polyphosphate has a central role in the rapid and massive accumulation of phosphorus in extraradical mycelium of an arbuscular mycorrhizal fungus. New Phytol 186(2):285–289Google Scholar
  50. Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68(1):139–146Google Scholar
  51. Hobbie EA, Hobbie JE (2008) Natural abundance of 15 N in nitrogen-limited forests and tundra can estimate nitrogen cycling through mycorrhizal fungi: a review. Ecosystems 11(5):815Google Scholar
  52. Hodge A, Storer K (2015) Arbuscular mycorrhiza and nitrogen: implications for individual plants through to ecosystems. Plant Soil 386(1–2):1–19Google Scholar
  53. Jacobson KM, Jacobson PJ, Miller OK (1993) The mycorrhizal status of Welwitschia mirabilis. Mycorrhiza 3(1):13–17Google Scholar
  54. Javelle A, Morel M, Rodríguez-Pastrana BR, Botton B, André B, Marini AM, Chalot M (2003) Molecular characterization, function and regulation of ammonium transporters (Amt) and ammonium-metabolizing enzymes (GS, NADP-GDH) in the ectomycorrhizal fungus Hebeloma cylindrosporum. Mol Microbiol 47(2):411–430Google Scholar
  55. Jin H, Pfeffer PE, Douds DD, Piotrowski E, Lammers PJ, Shachar-Hill Y (2005) The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis. New Phytol 168(3):687–696Google Scholar
  56. Johnson D, Leake JR, Read DJ (2002) Transfer of recent photosynthate into mycorrhizal mycelium of an upland grassland: short-term respiratory losses and accumulation of 14C. Soil Biol Biochem 34(10):1521–1524Google Scholar
  57. Kapoor R, Chaudhary V, Bhatnagar AK (2007) Effects of arbuscular mycorrhiza and phosphorus application on artemisinin concentration in Artemisia annua L. Mycorrhiza 17(7):581Google Scholar
  58. Kapoor R, Giri B, Mukerji KG (2002) Glomus macrocarpum: a potential bioinoculant to improve essential oil quality and concentration in Dill (Anethum graveolens L.) and Carum (Trachyspermum ammi (Linn.) Sprague). World J Microbiol Biotechnol 18(5):459–463Google Scholar
  59. Kapoor R, Sharma D, Bhatnagar AK (2008) Arbuscular mycorrhizae in micropropagation systems and their potential applications. Sci Hort 116(3):227–239Google Scholar
  60. Kivlin SN, Hawkes CV, Treseder KK (2011) Global diversity and distribution of arbuscular mycorrhizal fungi. Soil Biol Biochem 43(11):2294–2303Google Scholar
  61. Larose G, Chênevert R, Moutoglis P, Gagné S, Piché Y, Vierheilig H (2002) Flavonoid levels in roots of Medicago sativa are modulated by the developmental stage of the symbiosis and the root colonizing arbuscular mycorrhizal fungus. J Plant Physio 159(12):1329–1339Google Scholar
  62. Latef AAHA, Chaoxing H (2014) Does inoculation with Glomus mosseae improve salt tolerance in pepper plants? J Plant Growth Regul 33(3):644–653Google Scholar
  63. Lehnert M, Kottke I, Setaro S, Pazmiño LF, Suárez JP, Kessler M (2009) Mycorrhizal associations in ferns from southern Ecuador. Am Fern J 99:292–306Google Scholar
  64. Lehnert M, Krug M, Kessler M (2017) A review of symbiotic fungal endophytes in lycophytes and ferns–a global phylogenetic and ecological perspective. Symbiosis 71(2):77–89Google Scholar
  65. Lepage BA, Currah RS, Stockey RA, Rothwell GW (1997) Fossil ectomycorrhizae from the Middle Eocene. Am J Bot 84(3):410–412Google Scholar
  66. Ligrone R, Carafa A, Lumini E, Bianciotto V, Bonfante P, Duckett JG (2007) Glomeromycotean associations in liverworts: a molecular, cellular, and taxonomic analysis. Am J Bot 94(11):1756–1777Google Scholar
  67. Lindahl BD, Ihrmark K, Boberg J, Trumbore SE, Högberg P, Stenlid J, Finlay RD (2007) Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytol 173(3):611–620Google Scholar
  68. Liu H, Yuan M, Tan S, Yang X, Lan Z, Jiang Q, Jing Y (2015) Enhancement of arbuscular mycorrhizal fungus (Glomus versiforme) on the growth and Cd uptake by Cd-hyperaccumulator Solanum nigrum. Appl Soil Ecol 89:44–49Google Scholar
  69. López-Pedrosa A, González-Guerrero M, Valderas A, Azcón-Aguilar C, Ferrol N (2006) Gint AMT1 encodes a functional high-affinity ammonium transporter that is expressed in the extraradical mycelium of Glomus intraradices. Fungal Genet Biol 43(2):102–110Google Scholar
  70. Mäder P, Vierheilig H, Streitwolf-Engel R, Boller T, Frey B, Christie P, Wiemken A (2000) Transport of 15 N from a soil compartment separated by a polytetrafluoroethylene membrane to plant roots via the hyphae of arbuscular mycorrhizal fungi. New Phytol 146(1):155–161Google Scholar
  71. Maeda M (1954) The meaning of mycorrhiza in regard to systematic botany. Kumamoto J Sci Ser B 3:57–84Google Scholar
  72. Mandal S, Upadhyay S, Wajid S, Ram M, Jain DC, Singh VP, Kapoor R (2015) Arbuscular mycorrhiza increase artemisinin accumulation in Artemisia annua by higher expression of key biosynthesis genes via enhanced jasmonic acid levels. Mycorrhiza 25(5):345–357Google Scholar
  73. Mandal S, Evelin H, Giri B, Singh VP, Kapoor R (2013) Arbuscular mycorrhiza enhances the production of stevioside and rebaudioside-A in Stevia rebaudiana via nutritional and non-nutritional mechanisms. Appl Soil Ecol 72:187–194Google Scholar
  74. Mathur N, Vyas P, Joshi N, Choudhary K, Purohit DK (1999) Mycorrhiza: A Potent Bioinoculant for Sustainable Agriculture. In: Pathak H, Sharma A (eds) Microbial Technology: The Emerging Era. Lambert Academic Publisher, Germany, pp 230–245Google Scholar
  75. McKendrick SL, Leake JR, Taylor DL, Read DJ (2002) Symbiotic germination and development of the myco-heterotrophic orchid Neottia nidus-avis in nature and its requirement for locally distributed Sebacina spp. New Phytol 154(1):233–247Google Scholar
  76. Mechri B, Tekaya M, Cheheb H, Attia F, Hammami M (2015) Accumulation of flavonoids and phenolic compounds in olive tree roots in response to mycorrhizal colonization: A possible mechanism for regulation of defense molecules. J Plant Physiol 185:40–43Google Scholar
  77. Meier S, Borie F, Bolan N, Cornejo P (2012) Phytoremediation of metal-polluted soils by arbuscular mycorrhizal fungi. Crit Rev Environ Sci Tech 42(7):741–775Google Scholar
  78. Miransari M (2011) Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol Adv 29(6):645–653Google Scholar
  79. Morandi D (1996) Occurrence of phytoalexins and phenolic compounds in endomycorrhizal interactions, and their potential role in biological control. Plant Soil 185(2):241–251Google Scholar
  80. Nadarajah P, Nawawi A (1993) Mycorrhizal status of epiphytes in Malaysian oil palm plantations. Mycorrhiza 4(1):21–25Google Scholar
  81. Nebel M, Kreier HP, Peussing M, Weiss M, Kottke I (2004) Symbiotic fungal associations of liverworts are the possible ancestors of mycorrhizae. In: Agerer R, Piepenbring M, Blanz P (eds) Frontiers in basidiomycote mycology. IHW-Verlag, Eching, pp 339–360Google Scholar
  82. Newsham KK, Fitter AH, Watkinson AR (1995) Arbuscular mycorrhiza protect an annual grass from root pathogenic fungi in the field. J Ecol 83:991–1000Google Scholar
  83. Nottingham AT, Turner BL, Winter K, van der Heijden MG, Tanner EV (2010) Arbuscular mycorrhizal mycelial respiration in a moist tropical forest. New Phytol 186(4):957–967Google Scholar
  84. NUnez MA, Horton TR, Simberloff D (2009) Lack of belowground mutualisms hinders Pinaceae invasions. Ecology 90(9):2352–2359Google Scholar
  85. Ouahmane L, Revel JC, Hafidi M, Thioulouse J, Prin Y, Galiana A, Duponnois R (2009) Responses of Pinus halepensis growth, soil microbial catabolic functions and phosphate-solubilizing bacteria after rock phosphate amendment and ectomycorrhizal inoculation. Plant Soil 320(1–2):169–179Google Scholar
  86. Öpik M, Moora M, Liira J, Zobel M (2006) Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. J Ecol 94(4):778–790Google Scholar
  87. Öpik M, Moora M, Liira J, Kõljalg U, Zobel M, Sen R (2003) Divergent arbuscular mycorrhizal fungal communities colonize roots of Pulsatilla spp. in boreal Scots pine forest and grassland soils. New Phytol 160(3):581–593Google Scholar
  88. Öpik M, Davison J, Moora M, Zobel M (2013) DNA-based detection and identification of Glomeromycota: the virtual taxonomy of environmental sequences. Botany 92(2):135–147Google Scholar
  89. Peterson RL, Ashford AE, Allaway WG (1985) Vesicular-arbuscular mycorrhizal associations of vascular plants on Heron Island, a Great Barrier Reef coral cay. Aust J Bot 33(6):669–676Google Scholar
  90. Pressel S, P'ng KM, Duckett JG (2010) A cryo-scanning electron microscope study of the water relations of the remarkable cell wall in the moss Rhacocarpus purpurascens (Rhacocarpaceae, Bryophyta). Nova Hedwigia 91(3–4):289–299Google Scholar
  91. Rapparini F, Llusià J, Peñuelas J (2008) Effect of arbuscular mycorrhizal (AM) colonization on terpene emission and content of Artemisia annua L. Plant Biol 10(1):108–122Google Scholar
  92. Rapparini F, Peñuelas J (2014) Mycorrhizal fungi to alleviate drought stress on plant growth. In: Use of Microbes for the Alleviation of Soil Stresses, vol 1. Springer, New York, NY, pp 21–42Google Scholar
  93. Rasmussen HN, Whigham DF (2002) Phenology of roots and mycorrhiza in orchid species differing in phototrophic strategy. New Phytol 154(3):797–807Google Scholar
  94. Read DJ (1991) Mycorrhizas in ecosystems. Experientia 47:376–391Google Scholar
  95. Read DJ, Duckett JG, Francis R, Ligrone R, Russell A (2000) Symbiotic fungal associations in ‘lower’ land plants. Philos Trans R Soc Lond B: Bio Sci 355(1398):815–831Google Scholar
  96. Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171(1):41–53Google Scholar
  97. Rinaldi AC, Comandini O, Kuyper TW (2008) Ectomycorrhizal fungal diversity: separating the wheat from the chaff. Fungal Divers 33:1–45Google Scholar
  98. Rivera-Becerril F, Calantzis C, Turnau K, Caussanel JP, Belimov AA, Gianinazzi S, Strasser RJ, Gianinazzi-Pearson V (2002) Cadmium accumulation and buffering of cadmium-induced stress by arbuscular mycorrhiza in three Pisum sativum L. genotypes. J Expt Bot 53(371):1177–1185Google Scholar
  99. Ruiz-Sánchez M, Aroca R, Muñoz Y, Polón R, Ruiz-Lozano JM (2010) The arbuscular mycorrhizal symbiosis enhances the photosynthetic efficiency and the antioxidative response of rice plants subjected to drought stress. J Plant physio 167(11):862–869Google Scholar
  100. Schachtman DP, Reid RJ, Ayling SM (1998) Phosphorus uptake by plants: from soil to cell. Plant Physiol 116(2):447–453Google Scholar
  101. Schüepp H, Miller DD, Bodmer M (1987) A new technique for monitoring hyphal growth of vesicular-arbuscular mycorrhizal fungi through soil. Trans Br Mycol Soc 89(4):429–435Google Scholar
  102. Schüßler A (2000) Glomus claroideum forms an arbuscular mycorrhiza-like symbiosis with the hornwort Anthoceros punctatus. Mycorrhiza 10(1):15–21Google Scholar
  103. Selosse MA, Le Tacon F (1998) The land flora: a phototroph-fungus partnership? Trends Ecol Evol 13(1):15–20Google Scholar
  104. Serraj R, Sinclair TR (2002) Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant Cell Environ 25(2):333–341Google Scholar
  105. Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:26Google Scholar
  106. Sheng M, Tang M, Chen H, Yang B, Zhang F, Huang Y (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18(6–7):287–296Google Scholar
  107. Smith FA, Smith SE (1997) Tansley review no. 96 structural diversity in (vesicular)–arbuscular mycorrhizal symbioses. New Phytol 137(3):373–388Google Scholar
  108. Smith SE, Read DJ (2008) Mycorrhizal. symbiosis, 3rd edn. Academic Press, New York. ISBN, 440026354, 605Google Scholar
  109. Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227–250Google Scholar
  110. Stubblefield SP, Taylor TN, Trappe JM (1987) Fossil mycorrhizae: a case for symbiosis. Science 237(4810):59–60Google Scholar
  111. Tanaka Y, Yano K (2005) Nitrogen delivery to maize via mycorrhizal hyphae depends on the form of N supplied. Plant Cell Environ 28(10):1247–1254Google Scholar
  112. Taylor TN, Krings M, Taylor EL (2014) Fossil fungi. Academic Press, San DiegoGoogle Scholar
  113. Taylor TN, Remy W, Hass H, Kerp H (1995) Fossil arbuscular mycorrhizae from the Early Devonian. Mycologia 87:560–573Google Scholar
  114. Tedersoo L, May TW, Smith ME (2010) Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20(4):217–263Google Scholar
  115. Titus JH, Titus PJ, Nowak RS, Smith SD (2002) Arbuscular mycorrhizae of Mojave Desert plants. West N Am Naturalist 62:327–334Google Scholar
  116. Toljander JF, Lindahl BD, Paul LR, Elfstrand M, Finlay RD (2007) Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure. FEMS Microbiol Ecol 61(2):295–304Google Scholar
  117. Unestam T, Sun YP (1995) Extramatrical structures of hydrophobic and hydrophilic ectomycorrhizal fungi. Mycorrhiza 5(5):301–311Google Scholar
  118. Vallino M, Massa N, Lumini E, Bianciotto V, Berta G, Bonfante P (2006) Assessment of arbuscular mycorrhizal fungal diversity in roots of Solidago gigantea growing in a polluted soil in Northern Italy. Environ Microbiol 8(6):971–983Google Scholar
  119. Van Der Heijden MG, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11(3):296–310Google Scholar
  120. Van Der Heijden MG, Horton TR (2009) Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. J Ecol 97(6):1139–1150Google Scholar
  121. Van Der Heijden MG, Martin FM, Selosse MA, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205(4):1406–1423Google Scholar
  122. Vierheilig H, Bennett R, Kiddle G, Kaldorf M, Ludwig-Müller J (2000) Differences in glucosinolate patterns and arbuscular mycorrhizal status of glucosinolate-containing plant species. New Phytol 146(2):343–352Google Scholar
  123. Vosátka M, Albrechtová J (2008) Theoretical aspects and practical uses of mycorrhizal technology in floriculture and horticulture. In: da Silva Jaime JAT (ed) Floriculture ornamental plant biotechnology: advances and topical, vol 5. Global Sciences Book Ltd., Japan, pp 466–479Google Scholar
  124. Vosátka M, Albrechtová J (2009) Benefits of arbuscular mycorrhizal fungi to sustainable crop production. In: Microbial strategies for crop improvement. Springer, Berlin, Heidelberg, pp 205–225Google Scholar
  125. Vosátka M, Albrechtová J, Patten R (2008) The international market development for mycorrhizal technology. In: Mycorrhiza. Springer, Berlin, Heidelberg, pp 419–438Google Scholar
  126. Vosatka M, Dodd JC (2002) Ecological considerations for successful application of arbuscular mycorrhizal fungi inoculum. In: Mycorrhizal Technology in Agriculture. Birkhäuser, Basel, pp 235–247Google Scholar
  127. Walker JF, Aldrich-Wolfe L, Riffel A, Barbare H, Simpson NB, Trowbridge J, Jumpponen A (2011) Diverse Helotiales associated with the roots of three species of Arctic Ericaceae provide no evidence for host specificity. New Phytol 191(2):515–527Google Scholar
  128. Walter MH, Hans J, Strack D (2002) Two distantly related genes encoding 1-deoxy-d-xylulose 5-phosphate synthases: differential regulation in shoots and apocarotenoid-accumulating mycorrhizal roots. Plant J 31(3):243–254Google Scholar
  129. Wu QS, Cao MQ, Zou YN, He XH (2014) Direct and indirect effects of glomalin, mycorrhizal hyphae, and roots on aggregate stability in rhizosphere of trifoliate orange. Sci Rep 4:5823Google Scholar
  130. Wu QS, Zou YN (2009) Mycorrhiza has a direct effect on reactive oxygen metabolism of drought-stressed citrus. Plant Soil Environ 55(10):436–442Google Scholar
  131. Wurzburger N, Higgins BP, Hendrick RL (2012) Ericoid mycorrhizal root fungi and their multicopper oxidases from a temperate forest shrub. Ecol Evol 2(1):65–79Google Scholar
  132. Xu GH, Chague V, Melamed-Bessudo C, Kapulnik Y, Jain A, Raghothama KG, Silber A (2007) Functional characterization of LePT4: a phosphate transporter in tomato with mycorrhiza-enhanced expression. J Expt Bot 58(10):2491–2501Google Scholar
  133. Yang G, Liu N, Lu W, Wang S, Kan H, Zhang Y, Chen Y (2014) The interaction between arbuscular mycorrhizal fungi and soil phosphorus availability influences plant community productivity and ecosystem stability. J Ecol 102(4):1072–1082Google Scholar
  134. Zhi-wei Z (2000) The arbuscular mycorrhizas of pteridophytes in Yunnan, southwest China: evolutionary interpretations. Mycorrhiza 10(3):145–149Google Scholar
  135. Zhu HH, Yao Q (2004) Localized and systemic increase of phenols in tomato roots induced by Glomus versiforme inhibits Ralstonia solanacearum. J Phytopathol 152(10):537–542Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Dheeraj Pandey
    • 1
  • Harbans Kaur Kehri
    • 1
  • Ifra Zoomi
    • 1
  • Ovaid Akhtar
    • 1
  • Amit K. Singh
    • 2
  1. 1.Sadasivan Mycopathology Laboratory, Department of BotanyUniversity of AllahabadAllahabadIndia
  2. 2.Department of BiochemistryUniversity of AllahabadAllahabadIndia

Personalised recommendations