Advertisement

Aspergillus: Biodiversity, Ecological Significances, and Industrial Applications

  • Ahmed M. Abdel-Azeem
  • Mohamed A. Abdel-Azeem
  • Shimal Y. Abdul-Hadi
  • Amira G. Darwish
Chapter
Part of the Fungal Biology book series (FUNGBIO)

Abstract

Since Pier Antonio Micheli described and published genus Aspergillus in Nova Plantarum Genera in 1729, the genus attracted an immense interest. Aspergillus, a diverse genus occurring worldwide, species from this genus are considered to primarily be terricolous with important roles as decomposers of organic materials and cause destructive rots in the agricultural products and food industry where they produce a wide range of mycotoxins. The genus currently contains more than 340 accepted species, and its economic and historical importance makes it remain at center stage in future discussions about nomenclature and mycological diversity. Therefore, together with its ubiquitous nature, these species (anamorphic and teleomorphic) are of great significant impacts on ecosystems, agriculture, food production, biotechnology, and human and animal health. This chapter aims to give an overview on the studies and investigation of Aspergillus biodiversity in a wide variety of different ecological habitats, ecological significances, and industrial applications.

Keywords

Aflatoxins Aspergillus Biotechnological applications Different habitats Endophytes 

References

  1. Abdel-Azeem AM (1991) Effect of overgrazing on vegetation, microbes and soil in Ismailia-desert habitat. Biological Diversity Symposium, Madrid, pp 241–246Google Scholar
  2. Abdel-Azeem AM (2003) Ecological and taxonomical studies on ascospore-producing fungi in Egypt. PhD Thesis, Faculty of Science. Suez Canal University, EgyptGoogle Scholar
  3. Abdel-Azeem AM (2009) Operation Wallacea in Egypt. I- A preliminary study on diversity of fungi in the world heritage site of Saint Katherine Egypt. Assiut Univ J Bot 38(1):29–54Google Scholar
  4. Abdel-Azeem AM, Ibrahim ME (2004) Diversity of terrophilous mycobiota of Sinai. Egypt J Biol 6:21–31Google Scholar
  5. Abdel-Azeem AM, Rashad HM (2013) Mycobiota of outdoor air that can cause asthma: a case study from Lake Manzala, Egypt. Mycosphere 4(4):1092–1104Google Scholar
  6. Abdel-Azeem AM, Abdel-Moneim TS, Ibrahim ME, MAA H, Saleh MY (2007) Effect of long-term heavy metal contamination on diversity of terricolous fungi and nematodes in Egypt- a case study. Water Air Soil Pollut 186(1):233–254Google Scholar
  7. Abdel-Azeem AM, El-Morsy EM, Nour El-Dein MM, Rashad HM (2015) Occurrence and diversity of mycobiota in heavy metal contaminated sediments of Mediterranean coastal lagoon El-Manzala, Egypt. Mycosphere 6(2):228–240Google Scholar
  8. Abdel-Azeem AM, Salem FM, Abdel-Azeem MA, Nafady NA, Mohesien MT, Soliman EA (2016) Biodiversity of the Genus Aspergillus in different habitats. In: Gupta VK (ed) New and future developments in microbial biotechnology and bioengineering: Aspergillus system properties and applications. Elsevier, Amsterdam, pp 3–28Google Scholar
  9. Abdel-Hafez AII, Mazen MB, Galal AA (1989a) Keratinophilic and cycloheximide resistant fungi in soils of Sinai Governorate, Egypt. Cryptogam Mycol 10(3):265–275Google Scholar
  10. Abdel-Hafez AII, Mazen MB, Galal AA (1989b) Some ecological studies of osmophilic and halophilic soil fungi of Sinai Peninsula, Egypt. J Sohag Pure Appl Sci Bull 5:67–83Google Scholar
  11. Abdel-Hafez AII, Mazen MB, Galal AA (1990) Glycophilic and cellulose-decomposing fungi from soils of Sinai Peninsula, Egypt. Arab Gulf J Sci Res 8(1):153–168Google Scholar
  12. Abdel-Hafez SII (1981) Halophilic fungi of desert soils in Saudi Arabia. Mycopathologia 75:75e80Google Scholar
  13. Abdel-Hafez SII (1982a) Survey of microflora of desert soils in Saudi Arabia. Mycopathologia 80:3–8Google Scholar
  14. Abdel-Hafez SII (1982b) Osmophilic fungi of desert soils in Saudi Arabia. Mycopathologia 80:9–14Google Scholar
  15. Abdel-Hafez SII (1982c) Thermophilic and thermotolerant fungi of desert soils in Saudi Arabia. Mycopathologia 80:15–20Google Scholar
  16. Abdel-Hafez SII (1994) Studies on soil mycoflora of desert soils in Saudi Arabia. Mycopathologia 80:3–8Google Scholar
  17. Abdel-Hafez SII (1974) Ecological studies on Egyptian soil fungi, PhD Thesis. Department of Botany, Faculty of Science, Assiut University, EgyptGoogle Scholar
  18. Abdel-Hafez SII, Abdel-Kader MIA, Abdel-Hafez AII (1983) Composition of the fungal flora of Syrian soils. Mycopathologia 81(3):161–166Google Scholar
  19. Abdel-Hafez SII, El-Maghraby OMO (1993) Thermophilic and thermotolerant fungi of Wadi-Bir-El-Ain soils. Eastern desert, Egypt. Abhath Al-Yarmouk Pure Sci Eng 2:55–66Google Scholar
  20. Abdel-Hafez SII, Ismail MA, Hussein NA, Abdel-Hameed NA (2012) Fusaria and other fungi taxa associated with rhizosphere and rhizoplane of lentil and sesame at different growth stages. Acta Mycol 47(1):35–48Google Scholar
  21. Abdel-Hafez SII, Moharram AM, Abdel-Sater MA (2000) Monthly variations in the mycobiota of wheat fields in El-Kharga Oasis, Western Desert, Egypt. Bull Fac Sci Assiut Univ 29(2-D):195–211Google Scholar
  22. Abdel-Kader MIA, Abdel-Hafez AII, Abdel-Hafez SII (1983) Composition of the fungal flora of Syrian soils. II Cellulosedecomposing fungi. Mycopathologia 81:167–171Google Scholar
  23. Abdel-Sater MA (1990) Studies on the mycoflora of the New Valley area, Western Desert, Egypt. PhD Thesis, Faculty of Science, Assiut UniversityGoogle Scholar
  24. Abdel-Sater MA (2000) Soil fungi of the New Valley area, Western desert, Egypt. Bull Fac Sci Assiut Univ 29(2-D):255–271Google Scholar
  25. Abdullah SK, Al-Dossari MN, Al-Imara FJ (2010) Mycobiota of surface sediments in marshes of southern Iraq. Marsh Bull 5(1):14–26Google Scholar
  26. Abdullah SK, Al-Khesraji TO, Al-Edany TY (1986) Soil mycoflora of the southern desert of Iraq. Sydowia 39:8e16Google Scholar
  27. Abou-Zeid AM, El-Fattah RIA (2007) Ecological studies on the Rhizosperic Fungi of some halophytic plants in Taif Governorate, Saudi Arabia. World J Agric Sci 3:273–279Google Scholar
  28. Abramson D, Sinha RN, Mills JT (1987) Mycotoxin formation in moist 2-row and 6-row barley during granary storage. Mycopathologia 97:179–185Google Scholar
  29. Abrell L, Borgeson B, Crews P (1996) Chloro polyketides from the cultured fungus (Aspergillus) separated from a marine sponge. Tetrahedron Lett 37:2331–2334Google Scholar
  30. Abu Deraz SS (2014) Isolation and characterization of microbiota inhabiting Al-Aqsa Mosque, Al-Quds, Palestine. Master thesis, Faculty of Science, University of Suez CanalGoogle Scholar
  31. Abu Elsaoud AM, AbdelAzeem AM, Mousa AS, Hassan SSM (2015) Biosynthesis, optimisation and Photostimulation of αNADPH dependent nitrate Reductase mediated silver nanoparticles by Egyptian endophytic fungi. Advances in Environmental Biology 9(24):259–269Google Scholar
  32. Abu Deraz, S. S., Abdel-Azeem, A. M. and Mansour, S. R. ( 2016 ). Isolation and Characterization of Microbiota Inhabiting Al-Aqsa Mosque, Al-Quds, Palestine. LAP LAMBERT Academic Publishing. ISBN 978-3-659-96786-3.Google Scholar
  33. Aguilar CN, Augur C, Favela-Torres E, Viniegra-González G (2001) Production of tannase by Aspergillus niger Aa-20 in submerged and solid-state fermentation: influence of glucose and tannic acid. J Ind Microbiol Biotechnol 26(5):296–302Google Scholar
  34. Alberts AW, Chen J, Kuron G, Hunt V, Huff J, Hoffman C et al (1980) Mevinolin: a highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent. Proc Natl Acad Sci 77:3957–3961Google Scholar
  35. Al-Doory Y, Tolba MK, Al-Ani A (1959) On the fungal flora of Iraqi soil.II: Central Iraq. Mycologia 51:429–439Google Scholar
  36. Ali MI (1977) Studies on the fungal flora of Saudi Arabia. 1-Wadi Hanif. Bull Fac Sci Riyadh Univ 8:7–20Google Scholar
  37. Ali MI, Abu-Zinada AH, El-Mashharawi Z (1977) On the fungal flora of Saudi Arabia. 11-Seasonal fluctuations of fungi in the rhizosphere of some plants. Bull Fac Sci., Riyadh Univ 8:203–214Google Scholar
  38. Ali-Shtayeh MS, Jamous RM (2000) Keratinophilic fungi and related dermatophytes in polluted soil and water habitats. Revista Iberoam Micologia 17:51–59Google Scholar
  39. Al-Subai AAT (1983) Soil fungi in state of Qatar. M.Sc. Thesis, Botany Department, Faculty of Science, Qatar University, QatarGoogle Scholar
  40. Alva P, Mckenzie EHC, Pointing SB et al (2002) Do seagrasses harbour endophytes? In: Hyde KD (ed) Fungi in Marine Environments, vol 7. Fungal Diversity Research Series, Hong Kong, pp 167–178Google Scholar
  41. Anslow WK, Raistrick H (1938) Studies in the biochemistry of micro-organisms: Fumigatin (3-hydroxy-4-methoxy-2:5-toluquinone), and spinulosin (3:6-dihydroxy-4-methoxy-2:5-toluquinone), metabolic products respectively of Aspergillus fumigatus Fresenius and Penicillium spinulosum Thom. Biochem J 32(4):687–696Google Scholar
  42. Arif IA, Hashem AR (1988) Soil analysis and mycoflora of Gizan City, Saudi Arabia. Phyton, Argentina 62:109–113Google Scholar
  43. Atalla MM, Elkhrisy EAM, Asem MA (2011) Production of textile reddish brown dyes by fungi. Malays J Microbiol 33–40Google Scholar
  44. Amare MG, Keller NP (2014) Molecular mechanisms of Aspergillus flavus secondary metabolism and development. Fungal Genet Biol 66:11–18Google Scholar
  45. Anderson K, Morris G, Kennedy H, Croall J, Michie J, Richardson M et al (1996) Aspergillosis in immunocompromised paediatric patients: associations with building hygiene, design, and indoor air. Thorax 51(3):256–261Google Scholar
  46. Anisa SK, Ashwini S, Girish K (2013) Isolation and screening of Aspergillus spp. for pectinolytic activity. Electron J Biol 9(2):37–41Google Scholar
  47. Anke H, Kolthoum I, Zähner H, Laatsch H (1980) Metabolic products of microorganisms. The anthrax quinones of Aspergillus glaucus group. Occurrence,isolation, identification and antimicrobial activity. Arch Microbiol 126:223–230Google Scholar
  48. Antane S, Caufield CE, Hu W, Keeney D, Labthavikul P, Morris K et al (2006) Pulvinones as bacterial cell wall biosynthesis inhibitors. Bioorg Med Chem Lett 16:176–180Google Scholar
  49. Anwar YAS, Imartika H (2007) The production of tannin acyl hydrolase from Aspergillus niger. Indonesia Microbiol 1(2):91–94Google Scholar
  50. Aquino ACMM, Jorge JA, Terenzi HF, Polizeli MLTM (2003) Studies on a thermostable a-amylase from thermophilic fungus Scytalidium thermophilum. Appl Microbiol Biotechnol 61:323–328Google Scholar
  51. Arenz BE, Blanchette RA, Farrell RL (2014) Fungal diversity in Antarctic soils. In: Cowan D (ed) Antarctic terrestrial microbiology: physical and biological properties of Antarctic soils. Springer, Berlin, pp 35–53Google Scholar
  52. Ariff AB, Salleh MS, Ghani B, Hassan MA, Rusul G, Karim MIA (1996) Aeration and yeast extract requirements for kojic acid production by Aspergillus flavus link. Enzym Microb Technol 19(7):545–550Google Scholar
  53. Arora DS, Chandra P (2010a) Optimization of antioxidant potential of Aspergillus terreus through different statistical approaches. Biotechnol Appl Biochem 57:77–86. https://doi.org/10.1042/BA20100202Google Scholar
  54. Arora DS, Chandra P (2010b) Assay of antioxidant potential of two Aspergillus isolates by different methods under various physio-chemical conditions. Brazilian J Microbiol 41:765–777. https://doi.org/10.1590/S1517-83822010000300029Google Scholar
  55. Arora DS, Chandra P (2011) Antioxidant activity of Aspergillus fumigatus. ISRN Pharmacol. https://doi.org/10.5402/2011/619395
  56. Arya A, Shah AR, Sadasivan S (2001) Indoor aeromycoflora of Baroda museum and deterioration of Egyptian mummy. Curr Sci 81:793–799Google Scholar
  57. Baghdadi VC (1968) De speciebus novis Penicilli Fr. et Aspergilli Fr. E terrifies Syriae isolatis notula. Novitate Systematicae Plantarum non Vascularium 7:96–114Google Scholar
  58. Bai ZQ, Lin XP, Wang YZ, Wang JF, Zhou XF, Yang B et al (2014) New phenyl derivatives from endophytic fungus Aspergillus flavipes AIL8 derived of mangrove plant Acanthus ilicifolius. Fitoterapia 95:194–202Google Scholar
  59. Bajpai B, Patil S (2008) A new approach to microbial production of gallic acid. Braz J Microbiol 39:708–711Google Scholar
  60. Balbool BA, Abdel-Azeem AM, Khalil WF, El-Kazzaz WM (2013) Bioprospecting as a conservation tool: the genus Aspergillus (Eurotium) in Egypt. Third International Congress on Fungal Conservation, Akyaka, Mugla, Turkey, 11–15 November 2013. Abstract book: 36Google Scholar
  61. Barakat A (1999) Incidence of halophilic and osmophoilic soil fungi and glycerol biosynthesis by Eurotium amstelodami Manginfrom Riyadh, Saudi Arabia. Bull Fac Sci Assiut Univ 28(2-D):377–390Google Scholar
  62. Baranyi N, Kocsubé S, Vágvölgyi C, Varga J (2013) Current trends in aflatoxin research. Acta Biologica Szegediensis 57(2):95–107Google Scholar
  63. Barkai-Golan R, Paster N (2008) Mouldy fruits and vegetables as a source of mycotoxins: part 1. World Mycotoxin J 1(2):147–159Google Scholar
  64. Battilani P, Pietri A (2002) Ochratoxin A in grapes and wine. Euro J Plant Pathol 108:639–643Google Scholar
  65. Bayman P, Baker JL, Doster MA, Michailides TJ, Mahoney NE (2002) Ochratoxin production by the Aspergillus ochraceus group and Aspergillus alliaceus. Appl Environ Microbiol 68:2326–2329Google Scholar
  66. Begum MF, Absar N (2009) Purification and characterization of intracellular cellulase from Aspergillus oryzae ITCC-4857.01. Mycobiology 37(2):121–127Google Scholar
  67. Behera BC, Mishra RR, Thatoi HN (2012) Diversity of soil fungi from mangroves of Mahanadi delta, Orissa, India. J Microbiol Biotechnol Res 2:375–378Google Scholar
  68. Belmares R, Contresras-Esquival JC, Rodriguez-Harerra R, Coronel AR, Aguilar CN (2004) Lebensmittel-Wissenschaft Technologie. Food Sci Technol 37(8):857–864Google Scholar
  69. Belofsky GN, Jensen PR, Renner MK et al (1998) New Cytotoxic sesquiterpenoid nitrobenzoyl esters from a marine isolate of the fungus Aspergillus versicolor. Tetrahedron 54:1715–1724Google Scholar
  70. Bentley R (2006) From miso, sake and shoyu to cosmetics: a century of science for kojic acid. Nat Prod Rep 23(6):1046–1062Google Scholar
  71. Besada WH, Yusef HM (1968) Onthe mycoflora of UAR soil. Proc Egyp Acad Sci 21:103–109Google Scholar
  72. Betina V (1989) Mycotoxins – chemical, biological and environmental aspects. Elsevier, Amsterdam, pp 192–241Google Scholar
  73. Bhat MK, Bhat S (1997) Cellulose degrading enzymes and their potential industrial applications. Biotechnol Adv 15(3–4):583–620Google Scholar
  74. Bhatnagar-Mathur P, Sunkara S, Bhatnagar-Panwar M, Waliyar F, Sharma KK (2015) Biotechnological advances for combating Aspergillus flavus and aflatoxin contamination in crops. Plant Sci 234:119–132Google Scholar
  75. Birch A, Massywestropp R, Moye C (1955) Studies in relation to biosynthesis. 7. 2-Hydroxy-6-methylbenzoic acid in Penicillium griseofulvum Dierckx. Aust J Chem 8(4):539–544Google Scholar
  76. Bizukojc M, Pawlak M, Boruta T, Gonciarz J (2012) Effect of pH on biosynthesis of lovastatin and other secondary metabolites by Aspergillus terreus ATCC 20542. J Biotechnol 162:253–261Google Scholar
  77. Blanchette RA (1995) Biodeterioration of archaeological wood. CAB Biodeterioration Abstracts 9:113–127Google Scholar
  78. Blanchette RA (1998) In: Dardes K, Rotne A (eds) A guide to wood deterioration caused by microorganisms and insects. The Structural Conservation of Panel Paintings Getty Conversion Institute, Los Angeles, pp 55–68Google Scholar
  79. Boadi DK, Neufeld RJ (2001) Encapsulation of tannase for the hydrolysis of tea tannins. Enzyme Microbiol Technol 28:590–595Google Scholar
  80. Bonugli-Santos RC, Vasconcelos MR, Passarini MRZ, Vieira GAL, Lopes VCP, Mainardi PH et al (2015) Marine-derived fungi: diversity of enzymes and biotechnological applications. Front Microbiol doi.org/10.3389/fmicb.2015.00269
  81. Borut S (1960) An ecological and physiological study on soil fungi of the Northern Negev (Israel). Bull Res Coun E Israel 8:65–80Google Scholar
  82. Bridge PD, Spooner BM (2012) Non-lichenized Antarctic fungi: transient visitors or members of a cryptic ecosystem. Fungal Ecol 5:381–394Google Scholar
  83. Brock TD (1979) Ecology of saline lakes. In: Shilo M (ed) Strategies of microbial life in extreme environments. Dahlem Konferenzen, Berlin, pp 29–47Google Scholar
  84. Buchanan JR, Sommer NF, Fortlage RJ (1975) Aspergillus flavus infection and aflatoxin production in fig fruits. Appl Microbiol 30:238–241Google Scholar
  85. Butinar L, Frisvad JC, Gunde-Cimerman N (2011) Hypersaline waters- a potential source of foodborne toxigenic aspergilli and penicillia. FEMS Microbiol Ecol 77:186–199Google Scholar
  86. Butinar L, Santos S, Spencer-Martins I, Oren A, Gunde-Cimerman N (2005a) Yeast diversity in hypersaline habitats. FEMS Microbiol Lett 244(2):229–234Google Scholar
  87. Butinar L, Sonjak S, Zalar P, Plemenitaš A, Gunde-Cimerman N (2005b) Melanized halophilic fungi are eukaryotic members of microbial communities in hypersaline waters of solar salterns. Bot Mar 48(1):73–79Google Scholar
  88. Butinar L, Zalar P, Frisvad JC, Gunde-Cimerman N (2005c) The genus Eurotium—members of indigenous fungal community in hypersaline waters of salterns. FEMS Microbiol Ecol 51(2):155–166Google Scholar
  89. Callaghan TV, Björn LO, Chernov Y, Chapin T, Christensen TR, Huntley B et al (2004) Biodiversity, distributions and adaptations of Arctic species in the context of environmental change. Ambio 33:404–417Google Scholar
  90. Campbell AC, Maidment MS, Pick JH, Stevenson DFMJ (1985) Synthesis of (E)- and (2)-pulvinones. Chem Soc Perkin Trans 1:1567–1576Google Scholar
  91. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The carbohydrate-active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:233–238Google Scholar
  92. Cantrell SA, Casillas-Martinez L, Molina M (2006) Characterization of fungi from hypersaline environments of solar salterns using morphological and molecular techniques. Mycol Res 110:962–970Google Scholar
  93. Castellá G, Alborch L, Bragulat MR, Cabañes FJ (2015) Real time quantitative expression study of a polyketide synthase gene related to ochratoxin a biosynthesis in Aspergillus niger. Food Control 53:147–150Google Scholar
  94. Čavka M, Glasnović A, Janković I, Šikanjić PR, Perić B, Brkljačić B et al (2010) Microbiological analysis of a mummy from the archeological museum in Zagreb. Coll Antropol 34:803–805Google Scholar
  95. Chang CT, Tang MS, Lin CF (1995) Purification and properties of alpha-amylase from Aspergillus oryzaeATCC 76080. Biochem Mol Biol Int 36(1):185–193Google Scholar
  96. Chaudhary J, Pathak AN, Lakhawat S (2014) Production technology and applications of kojic acid. Annu Res Rev Biol 4(21):3165–3196Google Scholar
  97. Christensen M, Tuthill DE (1985) Aspergillus: an overview. In: Samson RA, Pitt JI (eds) Advances in Penicillium and Aspergillus systematics. Plenum Press, New York, NY, pp 195–209Google Scholar
  98. Chutmanop J, Chuichulcherm S, Chisti Y, Srinophakun P (2008) Protease production by Aspergillus oryzae in solid-state fermentation using agroindustrial substrates. J Chem Technol Biotechnol 83:1012–1018Google Scholar
  99. Chen FC, Manchard PS, Whalley WB (1969) The structure of monascin. J Chem Soc D, 130 – 131.Google Scholar
  100. Durán N, Teixeira MFS, De Conti R, Esposito E (2002) Ecological-friendly pigments from fungi. Crit Rev Food Sci Nutr 42:53–66Google Scholar
  101. Ciegler A (1972) Bioproduction of ochratoxin A and penicillic acid by members of the Aspergillus ochraceus group. Canad J Microbiol 18:631–636Google Scholar
  102. Cole RJ (1984) Cyclopiazonic acid and related toxins. In: Betina V (ed) Mycotoxins: production, isolation, separation and purification. Elsevier, Amsterdam, pp 405–414Google Scholar
  103. Cole RJ, Cox RH (1981) Handbook of toxic fungal metabolites. Academic Press, New York, NY, pp 368–373Google Scholar
  104. Conley CA, Ishkhanova G, McKay CP, Cullings K (2006) A preliminary survey of non-lichenized fungi cultured from the hyperarid Atacama Desert of Chile. Astrobiology 6:521–526Google Scholar
  105. Contesini FJ, Lopes DB, Macedo GA, Nascimento MG, Carvalho PO (2010) Aspergillus sp. lipase: potential biocatalyst for industrial use. J Mol Catal B Enzym 67:163–171Google Scholar
  106. Corazza GR, Benati G, Sorge M, Strocchi A, Calza G, Gasbarrini G (1992) beta-galactosidase from Aspergillus niger in adult lactose malabsorption: a double-blind crossover study. Aliment Pharmacol Ther 6(1):61–66Google Scholar
  107. Costa AM, CristinaSouza GM, Bracht A, Kadowaki MK, de Souza ACS, Oliveira RF et al (2013) Production of tannase and gallic acid by Aspergillus tamarii in submerged and solid state cultures. Afr J Biochem Res 7(10):197–202Google Scholar
  108. Couto SR, Toca-Herrera JL (2007) Laccase production at reactor scale by filamentous fungi. Biotechnol Adv 25:558–569Google Scholar
  109. Crespo-Sempere A, Martínez-Culebras PV, González-Candelas L (2014) The loss of the inducible Aspergillus carbonarius MFS transporter MfsA leads to ochratoxin A overproduction. Int J Food Microbiol 181:1–9Google Scholar
  110. Cruickshank RH, Pitt JI (1990) Isoenzyme patterns in Aspergillus flavus and closely related taxa. In: Samson RA, Pitt JI (eds) Modern concepts in Penicillium and Aspergillus classification. Plenum Press, New York and London, pp 259–264Google Scholar
  111. Cui L, Morris A, Ghedin E (2013) The human mycobiome in health and disease. Genome Med 5(7):63Google Scholar
  112. Cuijpers CEJ, Swaen GMH, Wesseling G, Sturmans F, Wouters EFM (1995) Adverse effects of the indoor environment on respiratory health in primary school children. Environ Res 68:11–23Google Scholar
  113. Currie JN (1917) The citric acid fermentationd of Aspergillus niger. J Biol Chem 31:15–37Google Scholar
  114. Darwish SS, El Hadidi N, Mansour M (2013) The effect of fungal decay on Ficus sycomorus wood. Int J Conserv Sci 4(3):271–282Google Scholar
  115. Davis ND (1981) Sterigmatocystin and other mycotoxins produced by Aspergillus species. J Food Prot 44:711–714Google Scholar
  116. De Castro RJS, Sato HH (2014) Production and biochemical characterization of protease from Aspergillus oryzae: an evaluation of the physical–chemical parameters using agroindustrial wastes as supports. Biocatal Agric Biotechnol 3:20–25Google Scholar
  117. De Vrese M, Laue C, Offick B, Soeth E, Repenning F, Thoß A et al (2015) A combination of acid lactase from Aspergillus oryzae and yogurt bacteria improves lactose digestion in lactose maldigesters synergistically: a randomized, controlled, double-blind cross-over trial. Clin Nutr 34(3):394–399Google Scholar
  118. de Vries RP, Visser J (2001) Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol Mol Biol Rev 65:497–522Google Scholar
  119. Debing J, Peijun L, Stagnitti F, Xianzhe X, Li L (2006) Pectinase production by solid fermentation from Aspergillus niger by a new prescription experiment. Ecotox Environ Safe 64:244–250Google Scholar
  120. Dendouga W, Boureghda H, Belhamra M (2015) Edaphic factors affecting distribution of soil fungi in three chotts located in Algeria desert. Courrier du Savoir 19:147–152Google Scholar
  121. Devi LS, Joshi SR (2012) Antimicrobial and synergistic effects of silver nanoparticles synthesized using soil fungi of high altitudes of eastern Himalaya. Mycobiology 40:27–34Google Scholar
  122. Dewi RT, Tachibana S, Itoh K (2012) Isolation of antioxidant compounds from Aspergillus Terreus LS01. J Microb Biochem Technol 04:10–14. https://doi.org/10.4172/1948-5948.1000065Google Scholar
  123. Dhillon GS, Brara SK, Verma M, Tyagi RD (2011) Utilization of different agro-industrial wastes for sustainable bioproduction of citric acid by Aspergillus niger. Biochem Eng J 54:83–92Google Scholar
  124. Ding B, Yin Y, Zhang F, Li Z (2011) Recovery and phylogenetic diversity of culturable fungi associated with marine sponges Clathrina luteoculcitella and Holoxea sp. in the South China Sea. Mar Biotechnol 13:713–721Google Scholar
  125. Dorner JW, Cole RJ, Diener UL (1984) The relationship of Aspergillus flavus and Aspergillus parasiticus with reference to production of Aflatoxins and cyclopiazonic acid. Mycopathologia 87:13–15Google Scholar
  126. Doster MA, Michailides TJ, Morgan DP (1996) Aspergillus species and mycotoxins in figs from Californian orchards. Plant Dis 80:484–489Google Scholar
  127. Dörfelt H, Schmidt AR (2005) A fossil Aspergillus from Baltic amber. Mycol Res 109:956–960Google Scholar
  128. Durairajan B, Sankari PS (2014) Optimization of solid state fermentation conditions for the production of pectinases by Aspergillus niger. J Pharm Biosci 2:50–57Google Scholar
  129. Durley RC, MacMillan J, Simpson TJ et al (1975) Fungal products. XIII Xanthomegnin, viomellein, rubrosulphin and viopurpurin, pigments from Aspergillus sulphureus and Aspergillus melleus. J Chem Perkin Trans 1:163–169Google Scholar
  130. Ein-Gil N, Ilan M, Carmeli S, Smith GW, Pawlik JR, Yarden O (2009) Presence of Aspergillus sydowii, a pathogen of gorgonian seafans in the marine sponge Spongia obscura. ISME J 3(6):752–755Google Scholar
  131. El-Buni AM, Rattan SS (1981) Check list of Libyan Fungi. Department of Botany, Al Faateh University, Tripoli, p 169Google Scholar
  132. El-Dohlob SM and FF Migahed (1985) Seed Borne and Rhizosphere fungi of four varieties of crop plants. 2nd Agric Conf Bot Sci 21–23 Sept.Google Scholar
  133. El-Said AHM, Saleem A (2008) Ecological and physiological studies on soil fungi at western region, Libya. Mycobiology 36(1):1–109Google Scholar
  134. Emami S, Hosseinimehr SJ, Taghdisi SM, Akhlaghpoor S (2007) Kojic acid and its manganese and zinc complexes as potential radioprotective agents. Bioorg Med Chem Lett 1(1):45–48Google Scholar
  135. Esawy MA, Gamala AA, Kamel Z, Ismail A-M S, Abdel-Fattah AF (2013) Evaluation of free and immobilized Aspergillus niger NRC1ami pectinase applicable in industrial processes. Carbohydr Poly 92:1463–1469Google Scholar
  136. El-Imam AA, Chenyu D (2014) Fermentative Itaconic Acid Production. J Biodivers Biopros Dev 1(1):1–8Google Scholar
  137. Feng Y, Shao Y, Chen F (2012) Monascus pigments. Appl Microbiol Biotechnol 96:1421–1440Google Scholar
  138. Fathi SM, El-Husseini TM, Abu-Zinada AH (1975) Seasonal variations of soil microflora and their activities in Riyadh region, Saudi Arabia. Bull Fac Sci Riyadh Univ 7:17–30Google Scholar
  139. Findley K, Oh J, Yang J, Conian S, Deming C et al (2013) Topographic diversity of fungal and bacterial communities in human skin. Nature https://doi.org/10.1038/nature12171f (online 22 May 2013)
  140. Flannigan B, Samson R, Miller J (eds) (2011) Microorganisms in home and indoor work environments. CRC Press, Boca RatonGoogle Scholar
  141. Flannigan B, Pearce AR (1994) Aspergillus spoilage: spoilage of cereals and cereal products by the hazardous species Aspergillus clavatus. In: Powell KA, Renwick A, Peberdy JF (eds) The Genus Aspergillus from taxonomy and genetics to industrial application. Plenum Press, New York, pp 55–62Google Scholar
  142. Flannigan B, McCabe EM, McGarry F (1991) Allergenic and toxigenic micro-organisms in houses. J Appl Bacteriol Sympos 70:61S–73SGoogle Scholar
  143. Fröhlich-Nowoisky J, Burrows SM, Xie Z, Engling G, Solomon PA, Fraser MP et al (2012) Biogeography in the air: fungal diversity over land and oceans. Biogeosciences 9:1125–1136. https://doi.org/10.5194/bg-9-1125-2012Google Scholar
  144. Friend BA, Shahani KM (1982) Characterization and evaluation of Aspergillus oryzae lactase coupled to a regenerable support. Biotechnol Bioeng 24(2):329–345Google Scholar
  145. Frisvad JC (2008) Fungi in cold ecosystems. In: Margesin R, Schinner F, Marx J-C, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, pp 137–156Google Scholar
  146. Futamura T, Okabe M, Tamura T, Toda K, Matsunobu T, Park YS (2001) Improvement of production of kojic acid by a mutant strain Aspergillus oryzae, MK107-39. J Biosci Bioeng 93(3):272–276Google Scholar
  147. Gallagher RT, Richard JL, Stahr HM, Cole RJ (1978) Cyclopiazonic acid production by aflatoxigenic and non-aflatoxigenic strains of Aspergillus flavus. Mycopathologia 66:31–36Google Scholar
  148. Gao H, Guo W, Wang Q, Zhang L, Zhu M, Zhu T et al (2013) Aspulvinones from a mangrove rhizosphere soil-derived fungus Aspergillus terreus Gwq-48 with anti-influenza A viral (H1N1) activity. Bioorg Med Chem Lett 23:1776–1778Google Scholar
  149. Gao Z, Li B, Zheng C, Wang G (2008) Molecular detection of fungal communities in the Hawaiian marine sponges Suberites zeteki and Mycale armata. Appl Environ Microbiol 74:6091–6101Google Scholar
  150. Geiser DM, Taylor JW, Ritchie KB, Smith GW (1998) Cause of sea fan death in the West Indies. Nature 394:137–138Google Scholar
  151. George DS, Ong C-B (2013) Improvement of tannase production under submerged fermentation by Aspergillus niger FBT1 isolated from a mangrove forest. Biotechnologia 94(4):451–456Google Scholar
  152. Ghannoum MA, Jurevic RJ, Mukherjee PK, Cui F, Sikaroodi M, Naqvi A et al (2010) Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathog 6:e1000713Google Scholar
  153. Giardina P, Faraco V, Pezzella C, Piscitelli A, Vanhulle S, Sannia G (2010) Laccases: a never-ending story. Cell Mol Life Sci 67:369–385Google Scholar
  154. Gill-Carey D (1949) The nature of some antibiotics from aspergilli. Brit J Exp Path 30(2):119Google Scholar
  155. Giridhar P, Reddy SM (2001) Incidence of mycotoxigenic fungi on raisins. Adv Plant Sci 14:291–294Google Scholar
  156. Giusiano G, Piontelli E, Mangiaterra M, Sosa MA (2002) Distribución altitudinal de hongos queratinófilos, epífitos y endófitos en suelos semiáridos del noroeste argentino (Prov. De Jujuy, 23°l.S Y 66°l.W). Boletín Micológico 17:51–62Google Scholar
  157. Gorst-Allman CP, Steyn PS (1979) Screening methods for the detection of thirteen common mycotoxins. J Chromatogr 175:325–331Google Scholar
  158. Grishkan I, Nevo E (2010) Spatiotemporal distribution of soil microfungi in the Makhtesh Ramon area, central Negev desert, Israel. Fungal Ecol 3:326–337Google Scholar
  159. Grishkan I, Rong-Liang J, Kidron GJ, Xin-Rong L (2015) Cultivable microfungal communities inhabiting biological soil crusts in the Tengger Desert, China. Pedosphere 25(3):351–363Google Scholar
  160. Global Industry Analysts I. Itaconic Acid (IA) Market Trends (Internet). (cited 2018 Jun 15). Available from: https://www.strategyr.com/MarketResearch/infographTemplate.asp?code=MCP-6465
  161. Gould BS, Raistrick H ( 1934 ) Crystalline colouring matters of species of the Aspergillus glaucus series. Biochem J, 1628 – 1640.Google Scholar
  162. Gupta S, Aggarwal S (2014) Novel Bio-colorants for textile application from fungi. J Textile Ass 282–287Google Scholar
  163. Guatam AK (2014) Diversity of fungal endophytes in some medicinal plants of Himachal Pradesh, India. Arch Phytopathol Plant Protect 47(5):537–544Google Scholar
  164. Guiraud P, Steiman R, Seigle-Murandi F, Sage L (1995) Mycoflora of soil around the Dead Sea II—Deuteromycetes (except Aspergillus and Penicillium). Syst Appl Microbiol 18:318–322Google Scholar
  165. Gunde-Cimerman N, Oren A, Plemenitaš A, Butinar L, Sonjak S, Turk M et al (2005) Halotolerant and halophilic fungi from coastal environments in the Arctics. In: Seckbach J (ed) Adaptation to life at high salt concentrations in Archaea, Bacteria, and Eukarya, vol 9., Cellular Origin. Life in Extreme Habitats and Astrobiology Springer, The Netherlands, pp 397–423Google Scholar
  166. Gunde-Cimerman N, Sonjak S, Zalar P, Frisvad JC, Diderichsen B, Plemenitaš A (2003) Extremophilic fungi in Arctic ice: a relationship between adaptation to low temperature and water activity. Phys Chem Earth Pt B 28:1273–1278Google Scholar
  167. Gunde-Cimerman N, Zalar P, de Hoog S, Plemenitaš A (2000) Hypersaline waters in salterns –natural ecological niches for halophilic black yeasts. FEMS Microbiol Ecol 32(3):235–240Google Scholar
  168. Guravaiah M, Kumar CP, Manasa C, Harika N, Sravani N (2018) Antioxidant activity of Aspergillus Stereus AF1. IOSR J Pharm Biol Sci 13:18–21. https://doi.org/10.9790/3008-1301041821Google Scholar
  169. Hanson JR (2008) The chemistry of fungi. The Royal Society of Chemistry, Cambridge, UKGoogle Scholar
  170. Hafez WA (2012) Comparative ecological studies on soil and rhizospheric fungi of maize and wheat plants in different areas in Minia Governorate Egypt. M.S. Thesis, Faculty of Science, El-MininaUniversityGoogle Scholar
  171. Hajian H, Yusoff WMW (2015) Itaconic acid production by microorganisms: a review current research. J Biol Sci 7(2):37–42Google Scholar
  172. Halwagy R, Moustafa AF, Kamel SM (1982) Ecology of the soil mycoflora in the desert soil of Kuwait. J Arid Environ 5:109–125Google Scholar
  173. Hallen-Adams HE, Suhr MJ (2017) Fungi in the healthy human gastrointestinal tract. Virulence 8(3):352–358Google Scholar
  174. Hamada S, Suzuki K, Aoki N, Suzuki Y (2013) Improvements in the qualities of gluten-free bread after using a protease obtained from Aspergillus oryzae. J Cereal Sci 57:91–97Google Scholar
  175. Hamdy HS, Fawzy EM (2012) Economic production of tannase by Aspergillus niger van tiegh adopting different fermentation protocols and possible applications. Romanian Biotechnol Lett 17(4):7441–7457Google Scholar
  176. Hansson D (2013) Structure and biosynthesis of fungal secondary metabolites: studies of the root Rot Pathogen Heterobasidion annosum s.l. and the Biocontrol Fungus Phlebiopsis gigantean. ThesisGoogle Scholar
  177. Hashem AR (1991) Studies on the fungal flora of Saudi Arabian soil. Crypt Bot 2/3:179–182Google Scholar
  178. Hashem AR (1995) Soil analysis and mycoflora of the Jubail industrial city in Saudi Arabia. J Univ Kuwait (Sci) 22:231–237Google Scholar
  179. Hatakka A, Hammel KE (2010) Fungal biodegradation of lignocelluloses. In: Hofrichter M (ed) The Mycota, X, Industrial applications, 2nd edn. Springer, Berlin Heidelberg. in pressGoogle Scholar
  180. Hernandéz MS, Rodríguez MR, Guerra NP, Rosés RP (2006) Amylase production by Aspergillus niger in submerged cultivation on two wastes from food industries. J Food Eng 73(1):93–100Google Scholar
  181. Hesseltine CW, Vandegraft EE, Fennell I et al (1972) Aspergilli as ochratoxin producers. Mycologia 64:539–550Google Scholar
  182. Höller U, Wrigh AD, Matthee GF et al (2000) Fungi from marine sponges: diversity, biological activity and secondary metabolites. Mycol Res 104:1354–1365Google Scholar
  183. Hogarth PJ (2007) The biology of mangroves and seagrasses, 2nd edn. Oxford University Press, New YorkGoogle Scholar
  184. Horn BW (2003) Ecology and population biology of aflatoxigenic fungi in soil. J Toxicol —Toxin Rev 22:351–379Google Scholar
  185. Horn BW, Dorner JW (2002) Effect of competition and adverse culture conditions on aflatoxin production by Aspergillus flavus through successive generations. Mycologia 94:741–751Google Scholar
  186. Horner WE, Helbling A, Salvaggio JE, Lehrer SB (1995) Fungal allergens. Clin Microbiol Rev 8:161–179Google Scholar
  187. Horré R, Symoens F, Delhaes L, Bouchara J-P (2010) Fungal respiratory infections in cystic fibrosis: a growing problem. Med Mycol 48:S1–S3. https://doi.org/10.3109/13693786.2010.529304Google Scholar
  188. Hu FB, Persky V, Flay BR, Richardson J (1997) An epidemiological study of asthma prevalence and related factors among young adult. Br Med J 34:67–76Google Scholar
  189. Huang X, Lu X, Li Y, Li X, Li J-J (2014) Improving itaconic acid production through genetic engineering of an industrial Aspergillus terreus strain. Microb Cell Factories 113(119):1–9Google Scholar
  190. Huffnagle GB, Noverr MC (2013) The emerging world of the fungal microbiome. Trends Microbiol 21:334–341. https://doi.org/10.1016/j.tim.2013.04.002Google Scholar
  191. Hurst PL, Nielsen J, Sullivan PA, Shepherd MG (1977) Purification and properties of a cellulase from Aspergillus niger. Biochem J 165(1):33–41Google Scholar
  192. Hyde KD, Jones EBG, Leano E, Pointing SB, Poonyth AD, Vrijmoed LLP (1998) Role of fungi in marine ecosystems. Biodivers Conserv 7:1147–1161Google Scholar
  193. Iamanaka BT, Taniwaki MH, Menezes HC et al (2005) Incidence of toxigenic fungi and ochratoxin A in dried fruits sold in Brazil. Food Addit Contam 22:1258–1263Google Scholar
  194. Ikeda Y, Park EY, Okuda N (2006) Bioconversion of waste office paper to gluconic acid in a turbine blade reactor by the filamentous fungus Aspergillus niger. Bioresour Technol 97(8):1030–1035Google Scholar
  195. Imran ZK, Al Rubaiy AA (2015) Molecular ecological typing of wild type Aspergillus terreus from arid soils and screening of lovastatin production. Afr J Microbiol Res 9(8):534–542Google Scholar
  196. Ingram CJE, Mulcare CA, Itan Y, Thomas MG, Swallow DM (2009) Lactose digestion and the evolutionary genetics of lactase persistence. Hum Genet 124(6):579–591Google Scholar
  197. Irbe I, Andersone I, Andersons B (2009) Diversity and distribution of wood decay fungi and wood discoloring fungi in buildings in Latvia. LLU Raksti 23(318):91–102Google Scholar
  198. Ismail ALS, Abdullah SK (1977) Studies on the soil fungi of Iraq. Proc Indian Acad Sci 86:151–154Google Scholar
  199. Ito Y, Sasaki T, Kitamoto K, Kumagai C, Takahashi K, Gomi K et al (2002) Cloning, nucleotide sequencing, and expression of the beta-galactosidase-encoding gene (lacA) from Aspergillus oryzae. J Gen App Microbiol 48(3):135–142Google Scholar
  200. Ivarson KC (1965) The microbiology of some permafrost soils in the McKenzie Valley, N.W.T. Arctic 18:256–260Google Scholar
  201. Jabra-Rizk MA, Ferreira SM, Sabet M, Falkler WA, Merz WG, Meiller TF (2001) Recovery of Candida dubliniensis and other yeasts from human immunodeficiency virus associated periodontal lesions. J Clin Microbiol 39:4520–4522Google Scholar
  202. Jaime-Garcia R, Cotty PJ (2010) Crop rotation and soil temperature influence the community structure of Aspergillus flavus in soil. Soil Biol Biochem 42:1842–1847Google Scholar
  203. Jahromi MH, Liang JB, Ho WH, Mohamad R, Goh YM, Shokryazdan P. 2012. Lovastatin production by Aspergillus terreus using agro-biomass as substrate in solid state fermentation J Biomedicine and Biotech, https://doi.org/10.1155/2012/196264
  204. Jaime-Garcia R, Cotty PJ (2006) Spatial relationships of soil texture and crop rotation to Aspergillus flavus community structure in South Texas. Phytopathology 96:599–607Google Scholar
  205. Jin H, Lei H, Jianping L, Zhinan X, Peilin C (2010) Organic chemicals from bioprocesses in China. Adv Biochem Eng Biotechnol 122:43–71Google Scholar
  206. Jinka R, Ramakrishna V, Rao S, Rao RP (2009) Purification and characterization of cysteine protease from germinating cotyledons of horse gram. BMC Biochem 10:1–11Google Scholar
  207. Junior PRJ, Yamamoto ACA, Amadio JVR, Martins ER, Leal FA et al (2012) Trichocomaceae: biodiversity of Aspergillus spp and Penicillium spp residing in libraries. J Infect Dev Ctries 6(10):734–743Google Scholar
  208. Jurjević Ž, Peterson SW, Horn BW (2012) Aspergillus section Versicolores: nine new species and multilocus DNA sequence based phylogeny. IMA Fungus 3:59–79Google Scholar
  209. Kareem SO, Akpan I, Alebiowu OO (2010) Production of citric acid by Aspergillus niger using pineapple waste. Malays J Microbiol 6(2):161–165Google Scholar
  210. Kariya M, Shigemi Y, Yano M, Konno H, Takii Y (2003) Purification and properties of α-amylase from Aspergillus oryzae MIBA316. J Biol Macromol 3(2):57–60Google Scholar
  211. Kathiresan K, Bingham BL (2001) Biology of mangroves and mangrove ecosystems. Adv Mar Biol 40:81–251Google Scholar
  212. Kawai Y, Otaka M, Kakio M, Oeda Y, Inoue N, Shinano H (1994) Screening of antioxidant-producing fungi in Aspergillus niger Group for Liquid- and Solid-State Fermentation. Bull Fac Fish Hokkaido Univ Hakodate 45:26–31. https://doi.org/10.1515/9783110824469.XGoogle Scholar
  213. Keilin D, Mann T (1939) Laccase, a blue copper-protein oxidase from the latex of Rhus succedanea. Nature 143:23–24Google Scholar
  214. Kelecom A (2002) Secondary metabolites from marine microorganisms. An Acad Bras Cienc 74:151–170Google Scholar
  215. Keller NP, Turner G, Bennett JW (2005) Fungal secondary metabolism: from biochemistry to genomics. Nat Rev Microbiol 3(12):937–947Google Scholar
  216. Khalil AMA, El-sheikh HH, Sultan MH (2013) Distribution of fungi in mangrove soil of coastal areas at Nabq and Ras Mohammed protectorates. Int J Curr Microbiol App Sci 2(12):264–274Google Scholar
  217. Khan AA, Bacha N, Ahmad B, Lutfullah G, Farooq U, Cox RJ (2014) Fungi as chemical industries and genetic engineering for the production of biologically active secondary metabolites. Asian Pac J Trop Biomed 4(11):859–870Google Scholar
  218. Kin R, T Sai and S So (1998) Itaconate copolymer with quadratic nonlinear optical characteristic. JP Patent No. 10,293,331Google Scholar
  219. Klement T, Büchs J (2013) Itaconic acid—a biotechnological process in change. Bioresour Technol 135:422–431Google Scholar
  220. Klich MA (2002a) Biogeography of Aspergillus species in soil and litter. Mycologia 94(1):21–27Google Scholar
  221. Klich MA (2002b) Identification of common Aspergillus Species. Centraalbureau voor Schimmelcultures, UtrechtGoogle Scholar
  222. Kohli P, Gupta R (2015) Alkaline pectinases: a review. Biocatal Agric Biotechnol 4:279–285Google Scholar
  223. Kohlmeyer J, Kohlmeyer E (1979) Marine mycology the higher fungi. In: Academic Press. NY. Habitats, New YorkGoogle Scholar
  224. König GM, Kehraus S, Seibert SF, Abdel-Lateff A, Müller D (2006) Natural products from marine organisms and their associated microbes. Chem Bio Chem 7:229–238Google Scholar
  225. Kredics L, Hatvani L, Naeimi S, Körmöczi P, Manczinger L, Vagvolgyi C, Druzhinina I (2014) Biodiversity of the genus Hypocrea/Trichoderma in different habitats. In: Gupta VG, Schmoll M, Herrera-Estrella A (eds) Biotechnology and Biology of Trichoderma. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-444-59576-8.00001-1Google Scholar
  226. Krishnan A, Alias SA, Michael Wong CVL, Pang KL, Convey P (2011) Extracellular hydrolase enzyme production by soil fungi from King George Island, Antarctica. Polar Biol 4:1535–1542Google Scholar
  227. Krnjaja V, Stojanovic LJ, Tomic Z, Nesic Z (2008) The presence of potentially toxigenic fungi in dairy cattle feed with focus on species of genus Аspergillus. J Mountain Agric Balkans 11:621–630Google Scholar
  228. Kubanek J, Jensen PR, Keifer PA, Sullards MC, Collins DO, Fenical W (2003) Seaweed resistance to microbial attack: a targeted chemical defense against marine fungi. Proc Natl Acad Sci U S A 100:6916–6921Google Scholar
  229. Kumar R, Sharma J, Singh R (2007) Production of tannase from Aspergillus ruber under solid-state fermentation using jamun (Syzygium cumini) leaves. Microbiol Res 162:384–390Google Scholar
  230. Kumar V, Yadav AN, Verema P, Sangwan P, Abhishake S, Singh B (2017) β-Propeller phytases: diversity, catalytic attributes, current developments and potential biotechnological applications. Int J Biol Macromolec 98:595–609Google Scholar
  231. Kunamneni A, Ballesteros A, Plou FJ, Alcalde M (2007) Fungal laccase—a versatile enzyme for biotechnological applications. In: Méndez-Vilas A (ed) Communicating current research educational topics trends applied microbiology. Formex, Badajoz, pp 233–245Google Scholar
  232. Kurakov AV, Somova NG, Ivanovskii RN (1999) Micromycetes populating limestone and red brick surfaces of the Novodevichii Convent masonry. Microbiologia 68:232–241Google Scholar
  233. Kurtzman CP, Horn HB, Hesseltine CW (1987) Aspergillus nomius: a new aflatoxin-producing species related to Aspergillus flavus and Aspergillus tamarii. J Microbiol 12:85–87Google Scholar
  234. Kusari S, Lamshoft M, Spiteller M (2009) Aspergillus fumigatus Fresenius, an endophytic fungus from Juniperus communis L. Horstmann as a novel source of the anticancer pro-drug deoxypodophyllotoxin. J Appl Microbiol 107:1019–1030Google Scholar
  235. Lal D, Gardner JJ (2012) Production, characterization and purification of tannase from Aspergillus niger. Eur J Exp Biol 2:1430–1438Google Scholar
  236. Lam C, Stang A, Harder T (2008) Planktonic bacteria and fungi are selectively eliminated by exposure to marine macroalgae in close proximity. FEMS Microbiol Ecol 63:283–291Google Scholar
  237. Lee LS, Bennett JW, Cucullu AF, Stanley JB (1975) Synthesis of versicolorin A by a mutant of Aspergillus parasiticus deficient in aflatoxin production. J Agric Food Chem 23:1132–1134Google Scholar
  238. Lee OO, Wang Y, Yang J, Lafi FF, Al-Suwailem A, Qian PY (2010) Pyrosequencing reveals highly diverse and species-specific microbial communities in sponges from the Red Sea. ISME J 5:650–664Google Scholar
  239. Lee SM, Li XF, Jiang H, Cheng JG, Seong S, Choi HD, Son BW (2003) Terreusinone, a novel UV-A protecting dipyrroloquinone from marine algicolous fungus Aspergillus terreus. Tetrahedron Lett 44:7707–7710Google Scholar
  240. Lehn JM, Malmstrom BG, Selin E, Oblad M (1986) Metal analysis of the laccase of Gabriel Bertrand. Reflections Biochem. https://doi.org/10.1016/0968-0004(86)90013-7
  241. Lekha PK, Lonsane BK (1997) Production and application of tannin acyl hydrolsase: state of the art. Adv Appl Microbiol 44:215–260Google Scholar
  242. Lević J, Gošić-Dondo S, Ivanović D, Stanković S, Krnjaja V, Boćarov-Stancić A, Stepanic A (2013) An outbreak of Aspergillus species in response to environmental conditions in Serbia. Pestic Phytomed (Belgrade) 28:167–179Google Scholar
  243. Li A, van Luijk N, ter Beek M, Caspers M, Punt P, van der Werf M (2011) A clone-based transcriptomics approach for the identification of genes relevant for itaconic acid production in Aspergillus. Fungal Genet Biol 3:602–611Google Scholar
  244. Li Q, Wang G (2009) Diversity of fungal isolates from three Hawaiian marine sponges. Microbiol Res 164:233–241Google Scholar
  245. Li WC, Zhou J, Guo SY, Guo LD (2007) Endophytic fungi associated with lichens in Baihua mountain of Beijing. China Fungal Divers 25:69–80Google Scholar
  246. Li XJ, Zhang Q, Zhang AL, Gao JM (2012) Metabolites from Aspergillus fumigatus, an endophytic fungus associated with Melia azedarach, and their antifungal, antifeedant, and toxic activities. J Agr Food Chem 60:3424–3431Google Scholar
  247. Liaud N, Giniés C, Navarro D, Fabre N, Crapart S, Herpoël-Gimbert I, Levasseur A, Raouche S, Sigoillot J-C (2014) Exploring fungal biodiversity: organic acid production by 66 strains of filamentous fungi. Fungal Biol Biotech 1:1–10Google Scholar
  248. Lin A, Lu X, FangY ZT, Gu Q, Zhu W (2008) Two new 5-Hydroxy-2-pyrone derivatives isolated from a marine-derived fungus Aspergillus flavus. J Antibiot 61:245–249Google Scholar
  249. Lin W, Brauers G, Ebel R, Wray V, Berg A, Sudarsono PP (2003) Novel chromone derivatives from fungus Aspergillus versicolor isolated from the marine sponge Xestospongia exigua. J Nat Prod 66:57–61Google Scholar
  250. Liu TPSL, Brandão Costa RMP, de Vasconcelos Freitas DJ, Oliveira Nacimento C, de Souza Motta CM, Bezerra RP, Nunes Herculano P, Porto ALF (2017) Tannase from Aspergillus melleus improves the antioxidant activity of green tea: purification and biochemical characterisation. Int J Food Sci Technol 52:652–661Google Scholar
  251. Liu W, Li C, Zhu P, Yang J, Cheng K (2010) Phylogenetic diversity of culturable fungi associated with two marine sponges: Haliclona simulans and Gelliodes carnosa, collected from the Hainan Island coastal waters of the South China Sea. Fungal Divers 42:1–15Google Scholar
  252. Londero AT, Guadalupe-Cortés JM (1990) Aspergiloses Pulmonares. J Pneumologia 16:78–90Google Scholar
  253. Lopez-Diaz TM, Flannigan B (1997) Production of patulin and cytochalasin E by Aspergillus clavatus during malting of barley and wheat. Int J Food Microbiol 35:129–136Google Scholar
  254. Lu F, Ping K, Wen L, Zhao W, Wang Z, Chu J, Zhuang Y (2015) Enhancing gluconic acid production by controlling the morphology of Aspergillus niger in submerged fermentation. Process Biochem 50:1342–1348Google Scholar
  255. Ma W, F-f Z, Ye Q, Z-x H, Yan D, Hou J, Yang Y (2014) Production and partial purification of tannase from Aspergillus ficuum Gim. 3.6. Prep Biochem Biotechnol 45:754–768Google Scholar
  256. Madavasamy S, Pannerselvam A (2012) Isolation, identification of fungi from Avecinnia marina Muthupet mangroves Thiruvarur Dt. Asian J Plant Sci Res 2:452–459Google Scholar
  257. Magnoli C, Astoreca A, Ponsone L, Combina M, Palacio G, Rosa CAR, Dalcero AM (2004) Survey of mycoflora and ochratoxin A in dried vine fruits from Argentina markets. Lett Appl Mycobiol 39:326–331Google Scholar
  258. Magnuson JK, Lasure LL (2004) Organic acid production by filamentous fungi. In: Tkacz JS, Lange L (eds) Advances in fungal biotechnology for industry, agriculture, and medicine. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8859-1_12Google Scholar
  259. Maheshwari M (2003) Microbial production of pectinases from coffee pulp waste. Paper Presented at 44th Annual Conference of Association of Microbiologists of India, Dharwad, pp 12–14Google Scholar
  260. Mahmoud SAZ, Abou El-Fadle M, El-Mofty M (1964) Studied on the rhizosphere microflora of a desert plants. Folia Microbiol (Praha) 9:1–8Google Scholar
  261. Maksimainen MM, Lampio A, Mertanen M, Turunen O, Rouvinen J (2013) The crystal structure of acidic β-galactosidase from Aspergillus oryzae. Int J Biol Macromol 60:109–115Google Scholar
  262. Mander GJ, Wang H, Bodie E, Wagner J, Vienken K, Vinuesa C, Foster C, Leeder AC, Allen G, Hamill V, Janssen GG, Dunn-Coleman N, Karos M, Lemaire HG, Subkowski T, Bollschweiler C, Turner G, Nüsslein B, Fischer R (2006) Use of laccase as a novel, versatile reporter system in filamentous fungi. Appl Environ Microbiol 72:5020–5026Google Scholar
  263. Manoharachary C, Kunwar IK, Tilak KV (2013) Diversity and characterization of fungi and its relevance. Indian Phytopath 66:10–13Google Scholar
  264. Mapari SAS, Thrane U, Meyer AS (2010) Fungal polyketide azaphilone pigments as future natural food colorants. Trends Biotechnol 28:300–307Google Scholar
  265. Marguet C, Favennec L, Matray O, Bertout S, Giraud S, Couderc L, Zouhair R, Leguillon C, Gargala G, Ballet J-JJ, Bouchara J-P (2012) Clinical and microbiological efficacy of micafungin on Geosmithia argillacea infection in a cystic fibrosis patient. Med Mycol Case Rep 1:79–81Google Scholar
  266. Marín S, Ramos AJ, Sanchis V (2012) Modeling Aspergillus flavus growth and aflatoxins production in pistachio nuts. Food Microbiol 32:378–388Google Scholar
  267. Masic Z, Bocarov-Stancic A, Sinovec Z, Dilas S, Adamovic M (2003) Mycotoxin in feed for animals in the Republic of Serbia. 10th Symposium Food Technology for Animal Safety and Quality, Vrnjačka Banja, Serbia and Montenegro. Book of ProoceedingsGoogle Scholar
  268. Mata-Gomez M, Rodriguez LV, Ramos EL, Renovato J, Cruz-Hernandez MA, Rodriguez R, Contreras J, Aguilar CN (2009) A novel tannase from the xerophilic fungus Aspergillus niger GH1. J Microbiol Biotechnol 19:987–996Google Scholar
  269. Max B, Salgado JM, Rodríguez N, Cortés S, Converti A, Domínguez JM (2010) Biotechnological production of citric acid. Braz J Microbiol 41:862–875Google Scholar
  270. Mayer AM, Staples RC (2002) Laccase: new functions for an old enzyme. Phytochemistry 60:551–565Google Scholar
  271. McGinnis MR (2007) Indoor mould development and dispersal. Med Mycol 4:1–9Google Scholar
  272. Medina A, Mateo R, Lopez-Ocana L, Valle-Algarra FM, Jiménez M (2005) Study of Spanish grape mycobiota and ochratoxin A production by isolates of Aspergillus tubingensis and other members of Aspergillus section Nigri. Appl Environ Microbiol 71:4696–4702Google Scholar
  273. Mehl HL, Cotty PJ (2013) Influence of plant host species on intraspecific competition during infection by Aspergillus flavus. Plant Pathol 62:1310–1318Google Scholar
  274. Menezes CBA, Bonugli-Santos RC, Miqueletto PB, Passarini MRZ, Silva CHD, Justo MR, Leal RR, Fantinatti-Garboggini F, Oliveira VM, Berlinck RGS, Sette LD (2010) Microbial diversity associated with algae, ascidians and sponges from the north coast of Sao Paulo state, Brazil. Microbiol Res 165:466–482Google Scholar
  275. Mislivec PB, Dieter CT, Bruce VR (1975) Effect of temperature and relative humidity on spore germination of mycotoxic species of Aspergillus and Penicillium. Mycologia 67:1187–1189Google Scholar
  276. Mitsuyasu O, Dwiarti L, Shin K, Enoch PY (2009) Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus. Appl Microbiol Biotechnol 84:597–606Google Scholar
  277. Molliard M (1922) Sur Une nouvelle fermentation acide produite par le Sterigmatocystis nigra (A new acidic fermentation by Sterigmatocystis nigra). CR Acad Sci 174:881–883Google Scholar
  278. Montasir AH, Mostafa MA, Elwan SH (1956a) Development of soil microflora under Zygophyllum album L. and Zygophyllum coccineum L. Ain Shams Sci Bull 1:9–22Google Scholar
  279. Montasir AH, Mostafa MA, Elwan SH (1956b) Development of soil microflora in relation to vegetation along a transect line at yellow hills, North Cairo. Ain Shams Sci Bull 1:23–32Google Scholar
  280. Moss MO (1977) Aspergillus mycotoxins. In: Smith JE, Patlman JA (eds) Genetics and physiology of Aspergillus. Academic Press, New York and London, pp 499–524Google Scholar
  281. Moubasher AH (1993) Soil fungi of Qatar and other Arab Countries. Centre for Scientific and Applied Research, University of Qatar, DohaGoogle Scholar
  282. Moubasher AH, Abdel-Hafez SII (1978) Studies on the mycoflora of Egyptian soils. Mycopathologia 63:3–10Google Scholar
  283. Moubasher AH, Abdel-Hafez SII, Bagy MMK, Abdel-Sater MA (1990) Halophilic and halotolerant fungi in cultivated, desert and salt marsh soils from Egypt. Acta Mycol 27:65–81Google Scholar
  284. Moubasher AH, Abdel-Hafez SII, El-Maghraby OMO (1985) Studies on soil mycoflora of Wadi Bir- El- Ain, Eastern Desert. Egypt Cryptogamie Mycol 6:129–143Google Scholar
  285. Moubasher AH, Abdel-Hafez SII, El-Maghraby OMO (1988) Seasonal fluctuations of soil and air borne fungi of Wadi Bir- El-Ain in Eastern Desert of Egypt. Nat Monspel Ser Bot 52:57–70Google Scholar
  286. Moubasher AH, El-Dohlob SM (1970) Seasonal fluctuation of Egyptian soil fungi. Trans Brit Mycol Soc 54:45–51Google Scholar
  287. Moubasher AH, Moustafa AF (1970) A survey of Egyptian soil fungi with special reference to Aspergillus, Penicillium and Penicillium related genera. Trans Brit Mycol Soc 54:35–44Google Scholar
  288. Moubasher AH, Moustafa AF (1972) Aspergillus aegyptiacus sp. nov Egypt J Bot 15:153–154Google Scholar
  289. Mouchaca J (1985) Les champignons. In: Balout DL, Roubet C (eds) La momie de Ramses II Editions. Recherches sur les Civilisations, Paris, pp 119–152Google Scholar
  290. Mouchacca J (1971) Pseudeurotium desertorum sp nov. Rev Mycol 36:123–127Google Scholar
  291. Mouchacca J (1973a) Deux Alternaria des sols arides d’Egypte: A. chlamydospora sp. nov. et A. phragmospora van Emden. Mycopathol Mycol Appl 50:217–225Google Scholar
  292. Mouchacca J (1973b) Les Thielavia des sols arides: espèces nouvelles et analyse générique. Bulletin de la Société Mycologique de France 89:295–311Google Scholar
  293. Mouchacca J (1977) Sur un nouveau Discomycetes Ascobolus egyptiacus Travaux dédiès à G. Viennot-Bourgin. Société Francaise de Phytopathologoie, Paris, pp 236–267Google Scholar
  294. Mouchacca J (1982) Etude analytique de la mycoflore de quelques sols de régions arides de l’Egypte. Thèse de Doctorat d’Etat, Muséum National d’Histoire Naturelle et Université Pierre et Marie Curie (Paris VI), 247 pGoogle Scholar
  295. Mouchacca J (1995) Check-list of novel fungi from the Middle East described mainly from soil since 1930. Sydowia 47:240–257Google Scholar
  296. Mouchacca J, Joly P (1976) Etude de la mycoflore des sols arides de l’Egypte. II. Le genre Aspergillus. Revue d’Ecologie et de. Biologie du Sol 13:293–313Google Scholar
  297. Mouchacca J, Joly P (1974) Etude de la mycoflore des sols arides de l’Egypte. I. Le genre Penicillium. Revue d’Ecologie et de. Biologie du Sol 11:67–88Google Scholar
  298. Mouchacca J, Nicot J (1973) Les Fusariella des sols arides. Revue de Mycologie 37:168–182Google Scholar
  299. Moustafa AF (1975) Osmophilous fungi in the salt marshes of Kuwait. Can J Microbiol 21:1573–1580Google Scholar
  300. Moyer AJ, Umberger EJ, Stubbs JJ (1940) Fermentation of concentrated solutions of glucose to gluconic acid. Improved process. Ind Eng -Chem, Ind Ed 32:1379–1383Google Scholar
  301. Mukherjee G, Mishra T, Deshmukh SK 2017. Fungal Pigments: An Overview. T. Satyanarayana et al. (eds.), Developments in Fungal Biology and Applied Mycology, https://doi.org/10.1007/978-981-10-4768-8_26. Springer Nature Singapore Pte Ltd.
  302. Mustafa AI, Abdel-Azeem AM, Salem FM (2013) Surveying and exploitation of some taxa for extracellular biosynthesis of silver nanoparticles. Third International Congress on Fungal Conservation, Akyaka, Mugla, Turkey, pp. 11–15, November 2013. Abstract book: 44Google Scholar
  303. Muthomi JW, Mureithi BK, Chemining’wa GN, Gathumbi JK, Mutitu EW (2012) Aspergillus species and Aflatoxin B1 in soil, maize grain and flour samples from semi-arid and humid regions of Kenya. Int J AgriSci 2:22–34Google Scholar
  304. Myers N, Mittermeier A, Mittermeier CG, da Fonseca AB, Kent I (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858Google Scholar
  305. Naguib AI, Mouchacca J (1970–1971) The mycoflora of Egyptian desert soils. Bulletin de l’Institut d’Egypte 52:37–61Google Scholar
  306. Naim MS (1967a) Contribution to the knowledge of soil fungi in Libya. Rhizosphere and soil fungi of Artemisia herba alba in Tripoli. Mycopath Mycol Appl 31:296–299Google Scholar
  307. Naim MS (1967b) Contribution to the knowledge of soil fungi in Libya. II. Fungus flora under Citrus trees in Libya. Mycopath Mycol Appl 31:300–304Google Scholar
  308. Nassar MSM (1998) Soil mycoflora of Wadi Abu-Subayrah at Aswan region at Eastern Desert of Egypt. Egypt J Bot 38:21–46Google Scholar
  309. Ncube T, Howard RL, Abotsi EK, van Rensburg ELJ, Ncube I (2012) Jatropha curcas seed cake as substrate for production of xylanase and cellulase by Aspergillus niger FGSCA733 in solid-state fermentation. Ind Crop Prod 37:118–123Google Scholar
  310. Negi S, Benerjee R (2006) Optimization of amylase and protease production from Aspergillus awamori in single bioreactor through EVOP factorial design technique. Food Technol Biotechnol 44:257–261Google Scholar
  311. Nguyen QD, Rezessy-Szabo JM, Claeyssens M, Stals I, Hoschke A (2002) Purification and characterisation of amylolytic enzymes from thermophilic fungus Thermomyces lanuginosus strain ATCC 34626. Enzymes Microbial Technol 31:345–352Google Scholar
  312. Nilsson T, Daniel G, Kirk KT, Obst JR (1989) Chemistry and microscopy of wood decay by some higher ascomycetes. Holzforschung 43:11–18Google Scholar
  313. Ogawa A, Wakisaka Y, Tanaka T, Sakiyama T, Nakanishi K (1995) Production of kojic acid by membrane-surface liquid culture of Aspergillus oryzae NRRL484. J Ferment Bioeng 80:41–45Google Scholar
  314. Oren A (2002) Halophilic microorganisms and their environments cellular origin and life in extreme habitats and astrobiology 5:233–267Google Scholar
  315. Osman ME, Khattab OH, Zaghlol GM, Abd El-Hameed RM (2011) Optimization of some physical and chemical factors for lovastatin productivity by local strain of Aspergillus terreus. Aust J Basic Appl Sci 5:718–732Google Scholar
  316. Oyeleke SB, Egwim EC, Auta SH (2010) Screening of Aspergillus flavus and Aspergillus fumigatus strains for extracellular protease enzyme production. J Microbiol Antimicrob 2:83–87Google Scholar
  317. Ozerskaya S, Kochkina G, Ivanushkina N, Gilichinsky DA (2009) Fungi in permafrost. In: Margesin R (ed) Permafrost soils. Soil biology, vol 16. Springer, Berlin, pp 85–95Google Scholar
  318. Palencia ER (2012) Endophytic associations of species in the Aspergillus section Nigri with maize (Zea mays) and peanut (Arachis hypogea) hosts, and their mycotoxins. University of Georgia, USA.Google Scholar
  319. Pandey A, Benjamin S, Soccol CR, Nigam P, Kriger N, Soccol VT (1999) The realm of microbial lipases in biotechnology. Biotechnol Appl Biochem 29:119–131Google Scholar
  320. Pandey A, Webb C, Soccol CR, Larroche C (2006) Enzyme technology. Springer Science & Business Media, New York, NYGoogle Scholar
  321. Paranthaman R, Vidyalakshmi R, Murugesh S, Singaravadivel K (2008) Optimisation of fermentation conditions for production of tannase enzyme by Aspergillus oryzae using sugarcane baggasse and rice straw. Global J Biotechnol Biochem 3:105–110Google Scholar
  322. Pathan AAK, Bhadra B, Begum Z, Shivaji S (2009) Diversity of yeasts from puddles in the vicinity of Midre Lovénbreen glacier, Arctic and bioprospecting for enzymes and fatty acids. Curr Microbiol 60:307–314Google Scholar
  323. Paz Z, Komon-Zelazowska M, Druzhinina IS, Aveskamp MM, Shnaiderman A, Aluma Y, Carmeli S, Ilan M, Yarden O (2010) Diversity and potential antifungal properties of fungi associated with a Mediterranean sponge. Fungal Divers 42:17–26Google Scholar
  324. Perrone G, Mulè G, Susca A, Battilani P, Pietri A, Logrieco A (2006) Ochratoxin A production and amplified fragment length polymorphism analysis of Aspergillus carbonarius, Aspergillus tubingensis and Aspergillus niger strains isolated from grapes in Italy. Appl Environ Microbiol 72:680–685Google Scholar
  325. Petrini O (1991) Fungal Endophytes of tree leaves. In: Andrews JH, Hirano SS (eds) Microbial ecology of leaves, Brock/Springer series in contemporary bioscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3168-4_9Google Scholar
  326. Pettersson O, Leong S-l L (2011) Fungal Xerophiles (Osmophiles). eLS John Wiley & Sons Ltd, ChichesterGoogle Scholar
  327. Pimentel M, Lembo A, Chey W, Zakko S, Ringel Y, Yu J, Mareya SM, Shaw AL, Bortey E, Forbes WP (2011) Rifaximin therapy for patients with irritable bowel syndrome without constipation. N Engl J Med 364:22–32Google Scholar
  328. Pinar G, Piombino-Mascali D, Maixner F, Zink A, Sterflinger K (2013) Microbial survey of the mummies from the Capuchin Catacombs of Palermo, Italy: biodeterioration risk and contamination of the indoor air. FEMS Microbiol Ecol 86:341–356Google Scholar
  329. Pinto GAS, Leite SGF, Terzi SC, Couri S (2001) Selection of tannase producing Aspergillus niger strains. Braz J Microbiol 32:24–26Google Scholar
  330. Piontelli E, SM MT, Giusiano G, Vivar V (2002) Distribución altitudinal de hongos queratinófilos, epífitos y endófitos en suelos desérticos del norte chileno (II Región, 23° LS Y 68° LW). Boletín Micológico 17Google Scholar
  331. Proksch P, Ebel R, Edrada R et al (2008) Sponge-associated fungi and their bioactive compounds: the Suberites case. Bot Mar 51:209–218Google Scholar
  332. Qiao MF, Ji NY, Liu XH, Li K, Zhu QM, Xue QZ (2010) Indoloditerpenes from an algicolous isolate of Aspergillus oryzae. Bioorg Med Chem Lett 20:5677–5680Google Scholar
  333. Quilico A, Panizzi L, Mugnaini E (1949) Structure of flavoglaucin and auroglaucin. Nature 164(4157):26Google Scholar
  334. Oren A (2002) Halophilic microorganisms and their environments Cellular origin and life in extreme habitats and astrobiology. Kluwer Academic, Dordrecht, the NetherlandsGoogle Scholar
  335. Raghukumar C, Raghukumar S, Sharma S, Chandramohan D (1992) Endolithic fungi from deep sea calcareous substrata: isolation and laboratory studies. In: Desai BN (ed) Oceanography of the Indian Ocean Oxford and IBH. Oxford & IBH Pub. Co., New Delhi, pp 3–9Google Scholar
  336. Raghunath R, Radhakrishna A, Angayarkanni J, Palaniswamy M (2012) Production and cytotoxicity studies of lovastatin from Aspergillus niger PN2 an endophytic fungi isolated from Taxus baccata. Int J Appl Biol Pharm Technol 3:342–351Google Scholar
  337. Raistrick H (1940) Biochemistry of the lower fungi. Annu Rev Biochem 9:571–592Google Scholar
  338. Ramachandran S, Fontanille P, Pandey A, Larroche C (2006) Gluconic acid: properties, applications and microbial production. Food Technol Biotechnol 44:185–195Google Scholar
  339. Ramachandran S, Fontanille P, Pandey A, Larroche C (2008) Permeabilization and inhibition of the germination of spores of Aspergillus niger for gluconic acid production from glucose. Bioresour Technol 99:4559–4565Google Scholar
  340. Ramos JAT, Barends S, Verhaert RMD, de Graaff LH (2011) The Aspergillus niger multicopper oxidase family: analysis and overexpression of laccase-like encoding genes. Microb Cell Factories 10:78Google Scholar
  341. Rana KL, Kour D, Verma P, Yadav AN, Kumar V, Singh DH (2017) Diversity and biotechnological applications of endophytic microbes associated with maize (Zea mays L.) growing in Indian Himalayan regions. In: Proceeding of National Conference on advances in food science and technology, The National Academy of Sciences, India (NASI), Abstract book pp 41–42Google Scholar
  342. Rana KL, Kour D, Yadav AN, Kumar V, Dhaliwal HS (2016a) Biotechnological applications of endophytic microbes associated with barley (Hordeum vulgare L.) growing in Indian Himalayan regions. In: Proceeding of 86th Annual Session of NASI & Symposium on “Science, Technology and Entrepreneurship for Human Welfare in The Himalayan Region”, the National Academy of Sciences, India (NASI), Abstract book p 80.Google Scholar
  343. Rana KL, Kour D, Yadav AN, Kumar V, Dhaliwal HS (2016b) Endophytic microbes from wheat: diversity and biotechnological applications for sustainable agriculture. In: Proceeding of 57th association of microbiologist of India & International symposium on “microbes and biosphere: What’s new What’s next”, p 453Google Scholar
  344. Rank C, Nielsen K, Larsen TO, Varga J, Samson RA, Frisvad JC (2011) Distribution of sterigmatocystin in filamentous fungi. Fungal Biol 115:406–420Google Scholar
  345. Raper KB, Fennell DI (1965) The genus . Baltimore: Williams & WilkinsGoogle Scholar
  346. Ratnasri PV, Lakshmi BKM, Ambika Devi K, Hemalatha KPJ (2014) Isolation, characterization of Aspergillus fumigatus and optimization of cultural conditions for amylase production. Int J Res Eng Technol 3:457–463Google Scholar
  347. Rayss T, Borut S (1958) Contribution to the knowledge of soil fungi in Israel. Mycopathol Mycol Applicata (Mycopathologia) 10:142–174Google Scholar
  348. Reeve JN, Christner BC, Kvitko BH, Mosley-Thompson E, Thompson LG (2002) Life in glacial ice (Abstract). In: Rossi M, Bartolucci S, Ciaramella M, Moracci M (eds) “Extremophiles 2002,” 4th international congress on extremophiles 2002. Naples, Italy, p 27Google Scholar
  349. Rehse K, Lehmke J (1985) Anticoagulante 3-Aryl-5- benzylidentetronsäuren. Arch Pharm 318:11Google Scholar
  350. Richard JL, Plattner RD, Mary J, Liska SL (1999) The occurrence of ochratoxin A in dust collected from a problem homehold. Mycopathologia 146:99–103Google Scholar
  351. Rodriguez R, Redman R (2008) More than 400 million years of evolution and some plants still can’t make it on their own: plant stress tolerance via fungal symbiosis. J Exp Bot 59:1109–1114Google Scholar
  352. Rodriguez RJ, White JF Jr, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330Google Scholar
  353. Rohr M, Kubicek CP, Kominek J (1983) Gluconic acid. In: Rehm HJ, Reed G (eds) Biotechnology, vol 3. Verlag Chemie, Weinheim, pp 455–465Google Scholar
  354. Rosés RP, Guerra NP (2009) Optimization of amylase production by Aspergillus niger in solid-state fermentation using sugarcane bagasse as solid support material. World J Microbiol Biotechnol 25:1929–1939Google Scholar
  355. Rosfarizan M, Arbakariya A, Hassan MA, Karim MIA, Hiroshi S, Suteaki S (2002) Importance of carbon source feeding and pH control strategies for maximum kojic acid production from sago starch by Aspergillus flavus. J Biosci Bioeng 94:99–105Google Scholar
  356. Roukas T (2000) Citric and gluconic acid production from fig by Aspergillus niger using solid-state fermentation. J Ind Microbiol Biotechnol 25:298–304Google Scholar
  357. Roussos S, Zaoula N, Salih G, Tantaoui-Elaraki A, Lamrani K, Cheheb M, Hassouni H, Verhé F, Perraud-Gaime I, Augur C, Ismaili-Alaoui M (2006) Characterization of filamentous fungi isolated from Moroccan olive and olive cake: toxigenic potential of Aspergillus strains. Molec Nutr Food Res 50:500–506Google Scholar
  358. Ruisi S, Barreca D, Selbmann L, Zucconi L, Onofri S (2007) Fungi in Antarctica. Rev Environ Sci Biotechnol 6:127–141Google Scholar
  359. Saadabi AMA (2006) On the Fungal Flora of Saudi Arabian Soils. Research Journal of Microbiology 1:280–284Google Scholar
  360. Sage L, Garon D, Seigle-Murandi F (2004) Fungal microflora and ochratoxin. A risk in French vineyards. J Agric Food Chem 52:5764–5768Google Scholar
  361. Sage L, Krivobok S, Delbos E, Seigle-Murandi F, Creppy EE (2002) Fungal flora and ochratoxin A production in grapes and musts from France. J Agric Food Chem 50:1306–1311Google Scholar
  362. Sahay H, Yadav AN, Singh AK, Singh S, Kaushik R, Saxena AK (2017) Hot springs of Indian Himalayas: potential sources of microbial diversity and thermostable hydrolytic enzymes. 3 Biotech 7:1–11Google Scholar
  363. Salama AM, Elbatanoni K, Ali MI (1971) Studies on the fungal flora of Egyptian soils. I. Western Mediterranean coast and Libyan Desert. United Arab Republic. J Bot 14:99–114Google Scholar
  364. Salem FM, Abdel-Azeem AM (2014) Screening of Anticancer metabolites produced by Endophytic Fungi. LAP LAMBERT Academic Publishing, SaarbrückenGoogle Scholar
  365. Salgado JM, Abrunhosa L, Venâncio A, Dominguez JM, Belo I (2014) Integrated use of residues from olive mill and winery for lipase production by solid state fermentation with Aspergillus sp. Appl Biochem Biotech 172:1832–1845Google Scholar
  366. Salonen J, Richardson M, Gallacher K, Issakainen J, Helenius H, Lehtonen O-P, Nikoskelainen J (2000) Fungal colonization of haematological patients receiving cytotoxic chemotherapy: emergence of azole-resistant Saccharomyces cerevisiae. J Hosp Infect 45:293–301Google Scholar
  367. Samaniego-Gaxiola JA, Chew-Madinaveitia Y (2007) Diversidad de géneros de hongos del suelo en tres campos con diferente condición agrícola en La Laguna. México Revista mexicana de biodiversidad 78:383–390Google Scholar
  368. Samson RA (2010) Food and indoor fungi. CBS-KNAW Fungal Biodiversity Centre, UtrechtGoogle Scholar
  369. Samson RA, Mouchacca J (1975) Additional notes on species of Aspergillus, Eurotium and Emericella from Egyptian desert soil. Antonie Van Leeuwenhoek 41:343–351Google Scholar
  370. Samson RA, Mouchacca J (1974) Some interesting species of Emericella and Aspergillus from Egyptian desert soil. Antonie Van Leeuwenhoek 40:121–131Google Scholar
  371. Samson RA, Visagie CM, Houbraken J, Hong S-B, Hubka V, Klaassen CHW, Perrone G, Seifert KA, Susca A, Tanney JB, Varga J, Kocsube S, Szigeti G, Yaguchi T, Frisvad JC (2014) Phylogeny, identification and nomenclature of the genus Aspergillus. Stud Mycol 78:141–173Google Scholar
  372. Sandri IG, Fontana RC, Barfknecht DM, da Silveira MM (2011) Clarification of fruit juices by fungal pectinases. LWT – Food Sci Technol 44:2217–2222Google Scholar
  373. Saric LC, Skrinjar MM (2008) Share of aflatoxigenic molds from genera Aspergillus and Penicillium in mycopopulations isolated from spices for meat processing industry. Pro Nat Sci Matica Srpska Novi Sad 114:115–122Google Scholar
  374. Sawstrom C, Mumford P, Marshall W, Hodson A, Laybourn-Parry J (2002) The microbial communities and primary productivity of cryoconite holes in an Arctic glacier (Svalbard 79°N). Polar Biol 25:591–596Google Scholar
  375. Scherer M, Fischer R (1998) Purification and characterization of Laccase II of Aspergillus nidulans. Arch Microbiol 170:78–84Google Scholar
  376. Schreferl G, Kubicek CP, Rohr M (1986) Inhibition of citric acid accumulation by manganese ions in Aspergillus niger mutants with reduced citrate control of phosphofructokinase. J Bacteriol 165:1019–1022Google Scholar
  377. Schulz B, Boyle C, Draeger S, Römmert A-K, Krohn K (2002) Endophytic fungi; a source of novel biologically active secondary metabolites. Mycol Res 106:996–1004Google Scholar
  378. Schuster GS (1999) Oral flora and pathogenic organisms. Infect Dis Clin N Am 13:757–774Google Scholar
  379. Scudamore KA, Atkin PM, Buckle AE (1986) Natural occurrence of the naphtoquinone mycotoxins, xanthomegnin, viomellein and vioxanthin in cereals and animal feedstuffs. J Stored Prod Res 22:81–84Google Scholar
  380. Seed PC (2015) The human mycobiome. Cold Spring Harb Perspect Med 5:a019810. https://doi.org/10.1101/cshperspect.a019810Google Scholar
  381. Semeniuk G, Harshfield G, Carlson C, Hesseltine C, Kwolek W (1971) Mycotoxins in Aspergillus. Mycopath Mycol Appl 43:137–152Google Scholar
  382. Serra R, Abrunhosa L, Kozakiewiez Z, Venâncio A (2003) Black Aspergillus species as ochratoxin A producers in Portuguese wine grapes. Int J Food Microbiol 88:63–68Google Scholar
  383. Shearer CA, Descals E, Kohlmeyer B, Kohlmeyer J, Marvanová L, Padgett D, Porter D, Raja HA, Schmit JP, Thorton HA, Voglymayr H (2007) Fungal biodiversity in aquatic habitats. Biodivers Conserv 16:49–67Google Scholar
  384. Shehu K, Bello MT (2011) Effect of environmental factors on the growth of Aspergillus species associated with stored millet grains in Sokoto. Nigerian J Basic Appl Sci 19:218–223Google Scholar
  385. Shelton BG, Kirkland KH, Flanders WD, Morris GK (2002) Profiles of airborne fungi in buildings and outdoor environments in the United States. Appl Environ Microbiol 68:1743–1753Google Scholar
  386. Shi F, Tan J, Chu J, Wang Y, Zhuang Y, Zhang S (2015) A qualitative and quantitative high-throughput assay for screening of gluconate high-yield strains by Aspergillus niger. J Microbiol Method 109:134–139Google Scholar
  387. Shrivastava A, Kar K (2009) Characterization and application of tannase produced by Aspergillus niger ITCC 6514.07 on pomegranate rind. Brazil J Microbiol 40:782–789Google Scholar
  388. Siala R, Frikha F, Mhamdi S, Nasri M, Kamoun AS (2012) Optimization of acid protease production by Aspergillus niger I1 on shrimp peptone using statistical experimental design. Sci World J 2012:564932. https://doi.org/10.1100/2012/564932Google Scholar
  389. Silva MRO, Almeida AC, Arruda FVF, Gusmao N (2011) Endophytic fungi from brazilian mangrove plant Laguncularia racemosa (L.) Gaertn. (Combretaceae): their antimicrobial potential. In: Méndez-Vilas A (ed) Science against microbial pathogens: communicating current research and technological advances. Formatex, Badajoz, pp 1260–1266Google Scholar
  390. Šimonovičová A, Kraková L, Pangallo D, Majorošová M, Piecková E, Bodoriková S, Dörnhoferová M (2015) Fungi on mummified human remains and in the indoor air in the Kuffner family crypt in Sládkovičovo (Slovakia). Int Biodeter Biodegrad 99:157–164Google Scholar
  391. Singh P, Raghukumar C, Meea RM, Verma P, Shiuche (2012a) Fungal diversity in deep-sea sediments revealed by culture-dependent and culture independent approaches. Fungal Ecol 5:543–553Google Scholar
  392. Singh SM, Singh SK, Yadav LS, Singh PN, Ravindra R (2012b) Filamentous soil fungi from Ny-Alesund, Spitsbergen, and screening for extracellular enzymes. Arctic 65:45–55Google Scholar
  393. Sivakumar T, Ravikumar M, Sivakumar N (2006) Abundance of mangrove fungi along the east coast of Tamil Nadu India. Asian J Microbiol Biotech Env Sci 18:589–594Google Scholar
  394. Sizova T, Gorlenko M (1967) Mycoflora of mukhafez of Damascus and Es-Suveida (Syria). Mikologia Fitopatdogii 1:286–293Google Scholar
  395. Soares I, Távora Z, Barcelos RP, Baroni S (2012) Microorganism produced enzymes in the food industry. In: Valdez B (ed) Scientific, health and social aspects of the food industry. InTech, RijekaGoogle Scholar
  396. Sohail M, Siddiqi R, Ahmad A, Khan SA (2009) Cellulase production from Aspergillus niger MS82: effect of temperature and pH. New Biotechnol 25:437–441Google Scholar
  397. Sommer NF, Buchanan JR, Fortlage RJ (1976) Aflatoxin and sterigmatocystin contamination of pistachio nuts in orchards. Appl Environ Microbiol 32:64–67Google Scholar
  398. Souza PM, Aliakbarian B, Ferreira Filho EX, Magalhães PO, Junior AP, Converti A, Perego P (2015) Kinetic and thermodynamic studies of a novel acid protease from Aspergillus foetidus. Int J Biol Macromol 81:17–21Google Scholar
  399. Spalding M, Blasco F, Field C (1997) World mangrove atlas. The International Society for Mangrove Ecosystems, Okinawa, p 178Google Scholar
  400. Spiering MJ, Greer DH, Schmid J (2006) Effects of the fungal endophyte, Neotyphodium lolii, on net photosynthesis and growth rates of perennial ryegrass (Lolium perenne) are independent of in plant endophyte concentration. Ann Bot 98:379–387Google Scholar
  401. Stack ME, Mislivec PB (1978) Production of xanthomegnin and viomellein by isolates of Aspergillus ochraceus, Penicillium cyclopium and Penicillium viridicatum. Appl Environ Microbiol 36:552–554Google Scholar
  402. Steiman R, Guiraud P, Sage L, Siegle-Murandi F, Lafond JL (1995) Mycoflora of soil around the Dead Sea I—Ascomycetes (including Aspergillus and Penicillium), Basidiomycetes, Zygomycetes. Syst Appl Microbiol 18:310–317Google Scholar
  403. Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502Google Scholar
  404. Strobel GA, Knighton B, Ren Y, Livinghouse T, Griffin M, Spakowicz D, Sears J (2008) The production of mycodiesel hydrocarbons and their derivatives by the endophytic fungus Gliocladium roseum (NRRL 50072). Microbiology 154:3319–3328Google Scholar
  405. Suman A, Yadav AN, Verma P (2016) Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Singh D, Abhilash P, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity, research perspectives. Springer-Verlag, New Delhi. https://doi.org/10.1007/978-81-322-2647-5_7Google Scholar
  406. Suryanarayanan TS (2012) Fungal Endosymbionts of seaweeds. In: Raghukumar C (ed) Biology of marine fungi. Progress in molecular and subcellular biology. Springer, Berlin. https://doi.org/10.1007/978-3-642-23342-5_3Google Scholar
  407. Suryanarayanan TS, Thirunavukkarasu N, Hariharan GN, Balaji P (2005) Occurrence of non-obligate microfungi inside lichen thalli. Sydowia 57:120–130Google Scholar
  408. Suryanarayanan TS, Venkatachalam A, Thirunavukkarasu N, Ravishankar JP, Doble M, Geetha V (2010) Internal mycobiota of marine macroalgae from the Tamilnadu coast: distribution, diversity and biotechnological potential. Bot Mar 53:457–468Google Scholar
  409. Tang Y, Lian B, Dong H, Liu D, Hou W (2012) Endolithic bacterial communities in dolomite and limestone rocks from the Nanjiang Canyon in Guizhou Karst area (China). Geomicrobiol J 29:213–225Google Scholar
  410. Tariq M, Dawar S, Mehdi FS (2008) Studies on the rhizosphere mycoflora of mangroves. Turkish J Bot 32:97–101Google Scholar
  411. Taylor TN, Krings M, Taylor EL (2015) 10 fungal diversity in the fossil record. In: McLaughlin D, Spatafora J (eds) Systematics and evolution. The Mycota (A comprehensive treatise on fungi as experimental systems for basic and applied research). Springer, Berlin. https://doi.org/10.1007/978-3-662-46011-5_10Google Scholar
  412. Tedersoo L, Bahram M, Polme S, Kõljalg U, Yorou NS, Wijesundera R et al (2014) Fungal biogeography. Global diversity and geography of soil fungi. Science. https://doi.org/10.1126/science.1256688
  413. Terabayashi Y, Sano M, Yamane N, Marui J, Tamano K, Sagara J, Dohmoto M, Oda K, Oshima E, Tachibana K, Higa Y, Ohashi S, Koike H, Machida M (2010) Identification and characterization of genes responsible for biosynthesis of kojic acid, an industrially important compound from Aspergillus oryzae. Fungal Genet Biol 47:953–961Google Scholar
  414. Thirunavukkarasu N, Suryanarayanan TS, Girivasan KP, Venkatachalam A, Geetha V, Ravishankar JP, Doble M (2012) Fungal symbionts of marine sponges from Rameswaram, southern India: species composition and bioactive metabolites. Fungal Divers 55:37–46Google Scholar
  415. Thomas GM, Poinar GO Jr (1988) A fossil Aspergillus from Eocene Dominican amber. J Paleontol 62:141–143Google Scholar
  416. Thurston CF (1994) The structure and function of fungal laccases. Microbiology 140:19–26Google Scholar
  417. Tiwari KL, Jadhav SK, Kumar A (2011) Morphological and molecular study of different penicillium species. Middle-East J Sci Res 7(2):203–210Google Scholar
  418. Tobert JA (2003) Lovastatin and beyond: the history of the HMG-CoA reductase inhibitors. Nat Rev Drug Discov 2:517–526Google Scholar
  419. Tolba M, Al-Doory Y, Al-Wahab M (1957) On the fungal flora of Iraqi soils. I Baghdad area. Proceeding of the third Arab Science Congress, Beirut, Abstract Book 198–214Google Scholar
  420. Tomita T (2003) Amylin in pancreatic islets and pancreatic endocrine neoplasms. Pathol Int 53:591–595Google Scholar
  421. Tremacoldi CR, Watanabe NK, Carmona EC (2004) Production of extracellular acid proteases by Aspergillus clavatus. World J Microbiol Biotechnol 20:639–642Google Scholar
  422. Tresner HD, Hayes JA (1971) Sodium chloride tolerance of terrestrial fungi. Appl Microbiol 22:210–213Google Scholar
  423. Tripathi M, Gupta RC, Joshi Y (2014a) Spegazzinia tessarthra isolated as a true endophyte from lichen Heterodermia flabellata. Ind Phytopathol 67:109–110Google Scholar
  424. Tripathi M, Gupta RC, Joshi Y (2014b) Physcia dilatata Nyl. (lichenized fungi, Physciaceae); a new host of Bipolaris australiensis (M.B. Ellis) Tsuda and Ueyama from Kumaun Himalaya, India. Proc Nat Acad Sci Lett 37:477–479Google Scholar
  425. Tripathi M, Joshi Y (2015) Endolichenic Fungi in Kumaun Himalaya: a case study. In: Upreti D, Divakar P, Shukla V, Bajpai R (eds) Recent advances in lichenology. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2235-4_6Google Scholar
  426. Tripathi M, Joshi Y, Gupta RC (2014c) Assessment of endolichenic fungal diversity in some forests of Kumaun Himalaya. Curr Sci 107:745–748Google Scholar
  427. Trüper HG, Galinski EA (1986) Concentrated brines as habitats for microorganisms. Experientia 42:1182–1187Google Scholar
  428. Turnerr W, Aldridge D (1983) Fungal Metabolites II. Academic Press Inc, London, pp 3–43Google Scholar
  429. Underhill DM, Iliev ID (2014) The mycobiota: interactions between commensal fungi and the host immune system. Nat Rev Immunol 14:405–416Google Scholar
  430. Urairuj C, Khanongnuch C, Lumyong S (2003) Ligninolytic enzymes from tropical endophytic. Xylariaceae Fungal Divers 13:209–219Google Scholar
  431. Vaishnav P, Demain AL (2010) Unexpected applications of secondary metabolites. Biotech Adv 29:223–229Google Scholar
  432. van der Straat L, Vernooij M, Lammers M, van den Berg W, Schonewille T, Cordewener J, van der Meer I, Koops A, de Graaff LH (2014) Expression of the Aspergillus terreus itaconic acid biosynthesis cluster in Aspergillus niger. Microb Cell Factories 13:11Google Scholar
  433. van Woerden HC, Gregory C, Brown R, Marchesi JR, Hoogendoorn B, Matthews IP (2013) Differences in fungi present in induced sputum samples from asthma patients and non-atopic controls: a community based case control study. BMC Infect Dis 13:69Google Scholar
  434. Vandenberghe LPS, Soccol CR, Pandey A, Lebeault JM (1999) Review: microbial production of citric acid. Braz Arch Biol Technol 42:1–14Google Scholar
  435. Varga J, Due M, Frisvad JC, Samson RA (2007b) Taxonomic revision of Aspergillus section Clavati based on molecular, morphological and physiological data. Stud Mycol 59:89–106Google Scholar
  436. Varga J, Frisvad JC, Samson RA (2009) A reappraisal of fungi producing aflatoxin. World Mycotoxin J 2:263–277Google Scholar
  437. Varga J, Kevei E, Rinyu E, Teren J, Kozakiewicz Z (1996) Ochratoxin production by Aspergillus species. Appl Environ Microbiol 62:4461–4464Google Scholar
  438. Varga J, Tóth B, Kocsubé S, Farkas B, Szakács G, Téren J, Kozakiewicz Z (2005) Evolutionary relationships among Aspergillus terreus isolates and their relatives. Antonie Van Leeuwenhoek 88:141–150Google Scholar
  439. Varoglu M, Crews P (2000) Biosynthetically diverse compounds from a saltwater culture of sponge-derived Aspergillus niger. J Nat Prod 63:41–43Google Scholar
  440. Vega FE, Posada F, Aime MC, Pava-Ripoll M, Infante F, Rehner SA (2008) Entomopathogenic fungal endophytes. Biol Control 46:72–82Google Scholar
  441. Vera C, Guerrero C, Conejeros R, Illanes A (2012) Synthesis of galacto oligosaccharides by β-galactosidase from Aspergillus oryzae using partially dissolved and supersaturated solution of lactose. Enzym Microb Technol 50:188–194Google Scholar
  442. Verma A, Johri BN, Prakash A (2014) Antagonistic evaluation of bioactive metabolite from endophytic fungus, Aspergillus flavipes KF671231. J Mycol. https://doi.org/10.1155/2014/371218
  443. Verma VC, Kharwar RN, Gange AC (2010) Biosynthesis of antimicrobial silver nanoparticles by the endophytic fungus Aspergillus clavatus. Nanomedicine 5:33–40Google Scholar
  444. Vesonder RF, Lambert R, Wicklow DT, Biehl ML (1988) Eurotium spp. and echinulin in feed refused by swine. Appl Environ Microbiol 54:830–831Google Scholar
  445. Visagie CM, Hirooka Y, Tanney JB Whitefield E, Mwange K, Meijer M, Amend AS, Seifert KA, Samso RA (2014) Aspergillus, Penicillium and Talaromyces isolated from in house dust samples collected around the world. Stud Mycol 78:63–139Google Scholar
  446. Volz PA, Ellanskaya IA, Wasser SP, Nevo E, Grishkan I (2001) Soil microfungi of Israel. Biodiversity of Cyanoprocaryotes, algae and fungi of Israel. In: Subramanian CV, Wasser SP (eds) Fifty-two photographic plates. A.R.A. Gantner Verlag K.-G, Ruggell, p 546Google Scholar
  447. Wakisaka Y, Segawa T, Imamur K, Sakiyama T, Nakanishi K (1998) Development of a cylindrical apparatus for membrane-surface liquid culture and production of kojic acid using Aspergillus oryzae NRRL484. J Ferment Bioeng 85:488–494Google Scholar
  448. Wardhani DH, Vázquez JA, Pandiella SS (2010) Optimisation of antioxidants extraction from soybeans fermented by Aspergillus oryzae. Food Chem 118:731–739Google Scholar
  449. Watanabe T (2002) Pictorial atlas of soil and Seed fungi, morphologies of cultured fungi and key to species, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  450. Wicklow DT, Cole RJ (1982) Tremorgenic indole metabolites and Aflatoxins in sclerotia of Aspergillus flavus: an evolutionary perspective. Can J Bot 60:525–528Google Scholar
  451. Wiese J, Ohlendorf B, Blumel M, Schmaljohann R, Imhoff JF (2011) Phylogenetic identification of fungi isolated from the marine sponge Tethya aurantium and identification of their secondary metabolites. Mar Drugs 9:561–585Google Scholar
  452. Wildman HG (2003) The rise and fall of natural products screening for drug discovery. Fungal Divers 13:221–231Google Scholar
  453. Williams DW, Lewis MAO (2000) Isolation and identification of Candida from the oral cavity. Oral Diseases 6(1):3–11Google Scholar
  454. Wu ZH, Liu D, Xu Y, Chen JL, Lin WH (2018) Antioxidant xanthones and anthraquinones isolated from a marine-derived fungus Aspergillus versicolor. Chin J Nat Med 16:219–224Google Scholar
  455. Xu H-W, Xu C, Fan ZQ, Zhao LJ, Liu HM (2013) A facile synthesis, antibacterial activity of pulvinone and its derivatives. Bioorg Med Chem Lett 23:737–739Google Scholar
  456. Yadav AN (2018) Biodiversity and biotechnological applications of host-specific Endophytic fungi for sustainable agriculture and allied sectors. Acta Sci Microbiol 1:01–05Google Scholar
  457. Yadav AN, Kumar R, Kumar S, Kumar V, Sugitha T, Singh B, Chauhan VS, Dhaliwal HS, Saxena AK (2017a) Beneficial microbiomes: biodiversity and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Biotechnol 5:1–13Google Scholar
  458. Yadav AN, Sachan SG, Verma P, Kaushik R, Saxena AK (2016) Cold active hydrolytic enzymes production by psychrotrophic Bacilli isolated from three sub-glacial lakes of NW Indian Himalayas. J Basic Microbiol 56:294–307Google Scholar
  459. Yadav AN, Verma P, Kumar R, Kumar V, Kumar K (2017b) Current applications and future prospects of eco-friendly microbes. EU Voice 3:1–3Google Scholar
  460. Yadav AN, Verma P, Kumar V, Sangwan P, Mishra S, Panjiar N, Gupta VK, Saxena AK (2018) Biodiversity of the Genus Penicillium in different habitats. In: Gupta VK, Rodriguez-Couto S (eds) New and future developments in microbial biotechnology and bioengineering, Penicillium system properties and applications. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-444-63501-3.00001-6Google Scholar
  461. Yen GC, Chang YC, Su W (2003) Antioxidant activity and active compounds of rice koji fermented with Aspergillus candidus. Food Chem 83:49–54Google Scholar
  462. Youssef YA (1974) On the fungal flora of Libyan soils. Arch Microbiol 99:167–171Google Scholar
  463. Yu X, Li Y, Wang C, Wu D (2004) Immobilization of Aspergillus niger tannase by microencapsulation and its kinetic characteristics. Biotechnol Appl Biochem 40:151–155Google Scholar
  464. Yu Z, Zhang B, Sun W, Zhang F, Li Z (2012) Phylogenetically diverse endozoic fungi in the South China Sea sponges and their potential in synthesizing bioactive natural products suggested by PKS gene and cytotoxic activity analysis. Fungal Divers. Available from: http://dx.doi.org/10.1007/s13225-012-0192-7.
  465. Zhang A, Roehr M (2002) Citric acid fermentation and heavy metal ions – II. The action of elevated manganese ion concentrations. Acta Biotechnol 22:375–382Google Scholar
  466. Zhang XY, Bao J, Wang GH, He F, Xu XY, Qi SH (2012) Diversity and antimicrobial activity of culturable fungi isolated from six species of the South China Sea gorgonians. Microb Ecol 64(3):617–627Google Scholar
  467. Zhang XY, Tang GL, Xu XY, Nong XH, Qi SH (2014) Insights into deep-sea sediment fungal communities from the East Indian Ocean using targeted environmental sequencing combined with traditional cultivation. PLoS One 9:e109118Google Scholar
  468. Zhang Y, Han T, Ming Q, Wu L, Rahman K, Qin L (2012a) Alkaloids produced by endophytic fungi: a review. Nat Prod Commun 7:963–968Google Scholar
  469. Zhang Y, Li XM, Proksch P (2007a) Ergosterimide, a new natural Diels–Alder adduct of a steroid and maleimide in the fungus Aspergillus niger. Steroids 72:723–727Google Scholar
  470. Zhang Y, Li XM, Wang BG (2012b) Anthraquinone derivatives produced by marine-derived fungus Aspergillus versicolor EN-7. Biosci Biotechnol Biochem 76:1774–1776Google Scholar
  471. Zhang Y, Li XM, Wang CY, Wang BG (2007b) A new naphthoquinoneimine derivative from the marine algal-derived endophytic fungus Aspergillus niger EN-13. Chin Chem Lett 18:951–953Google Scholar
  472. Zhang Y, Wang S, Li XM, Cui CM, Feng C, Wang BG (2007c) New sphingolipids with a previously unreported 9-methyl-C20- sphingosine moiety from a marine algous endophytic fungus Aspergillus niger EN-13. Lipids 42:759–764Google Scholar
  473. Zhao K, Ping W, Li Q, Hao S, Zhao L, Gao TD (2009) Aspergillus niger var. taxi, a new species variant of taxol producing fungus isolated from Taxus cuspidata in China. J Appl Microbiol 107:1202–1207Google Scholar
  474. Zhou K, Zhang X, Zhang F, Li Z (2011) Phylogenetically diverse cultivable fungal community and polyketide synthase (PKS), non-ribosomal peptide synthase (NRPS) genes associated with the South China Sea sponges. Microb Ecol 62:644–654Google Scholar
  475. Zidan Y, Handoussa T, Hosni H, El Hadidi NMN (2006) The conservation of a wooden Graeco- Roman coffin box, e-Preservation. Science 3:27–33Google Scholar
  476. Zohri AA, Elkhateeb WA, Mazen MB, Hashem M, Daba GM (2014) Study of soil mycobiota diversity in some new reclaimed areas, Egypt. Egyptian Pharmaceutical Journal 2014:58–63Google Scholar
  477. Zuccaro A, Summerbell RC, Gams W, Schroers HJ, Mitchell JI (2004) A new Acremonium species associated with Fucus spp., and its affinity with a phylogenetically distinct marine Emericellopsis clade. Stud Mycol 50:283–297Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ahmed M. Abdel-Azeem
    • 1
  • Mohamed A. Abdel-Azeem
    • 2
  • Shimal Y. Abdul-Hadi
    • 3
  • Amira G. Darwish
    • 4
  1. 1.Botany DepartmentFaculty of Science, University of Suez CanalIsmailiaEgypt
  2. 2.Faculty of Pharmacy and Pharmaceutical IndustriesUniversity of SinaiEl-Masaid, Al-ArishEgypt
  3. 3.Department of BiologyEducation College of Pure Sciences, University of MosulMosulIraq
  4. 4.Food Technology DepartmentArid Lands Cultivation Research Institute, City of Scientific Research and Technological ApplicationsNew Borg El-ArabEgypt

Personalised recommendations