Advertisement

Endophytic Fungi: Biodiversity, Ecological Significance, and Potential Industrial Applications

  • Kusam Lata Rana
  • Divjot Kour
  • Imran Sheikh
  • Anu Dhiman
  • Neelam Yadav
  • Ajar Nath YadavEmail author
  • Ali A. Rastegari
  • Karan Singh
  • Anil Kumar Saxena
Chapter
Part of the Fungal Biology book series (FUNGBIO)

Abstract

Endophytic fungi are abundant and have been reported from all tissues such as roots, stems, leaves, flowers, and fruits. In recent years, research into the beneficial use of endophytic fungi has increased worldwide. In this chapter, we critically review the production of a wide range of secondary metabolites, bioactive compounds from fungal endophytes that are a potential alternative source of secondary plant metabolites and natural producers of high-demand drugs. One of the major areas in endophytic research that holds both economic and environmental potential is bioremediation. During their life span, microbes adapt fast to environmental pollutants and remediate their surrounding microenvironment. In the last two decades, bioremediation has arisen as a suitable alternative for remediating large polluted sites. Endophytic fungi producing ligninolytic enzymes have possible biotechnological applications in lignocellulosic biorefineries. This chapter highlights the recent progress that has been made in screening endophytic fungi for the production and commercialization of certain biologically active compounds of fungal endophytic origin.

Keywords

Anticancerous molecule Bioactive compounds Biofertilizers Bioremediation Endophytic fungi Lignocellulosic biorefineries Secondary metabolites 

Notes

Acknowledgements

The authors are grateful to Prof. Harcharan Singh Dhaliwal, Vice Chancellor, Eternal University, Baru Sahib, Himachal Pradesh, India, for providing infra-structural facilities and constant encouragement.

References

  1. Abdel-Raheem A, Shearer C (2002) Extracellular enzyme production by freshwater ascomycetes. Fungal Div 11:1–19Google Scholar
  2. Abrunhosa L, Oliveira F, Dantas D, Gonçalves C, Belo I (2013) Lipase production by Aspergillus ibericus using olive mill wastewater. Bioprocess Biosyst Eng 36:285–291Google Scholar
  3. Adav SS, Sze SK (2014) Trichoderma secretome: an overview. In: Gupta VK, Schmoll M, Herrera-Estrella A, Upadhyay RS, Druzhinina I, Tuohy MG (eds) Biotechnology and biology of Trichoderma. Elsevier, Amsterdam, pp 103–114Google Scholar
  4. Adnan M, Alshammari E, Ashraf SA, Patel K, Lad K, Patel M (2018) Physiological and molecular characterization of biosurfactant producing endophytic fungi Xylaria regalis from the cones of Thuja plicata as a potent plant growth promoter with its potential application. BioMed Res Int. https://doi.org/10.1155/2018/7362148
  5. Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98:2243–2257Google Scholar
  6. Ahmad N, Hamayun M, Khan SA, Khan AL, Lee I-J, Shin D-H (2010) Gibberellin-producing endophytic fungi isolated from Monochoria vaginalis. J Microbiol Biotechnol 20:1744–1749Google Scholar
  7. Alshammari AM, Adnan FM, Mustafa H, Hammad N (2011) Bioethanol fuel production from rotten banana as an environmental waste management and sustainable energy. Afr. J Microbiol Res 5:586–598Google Scholar
  8. Aly AH, Edrada-Ebel R, Wray V, Müller WE, Kozytska S, Hentschel U, Proksch P, Ebel R (2008) Bioactive metabolites from the endophytic fungus Ampelomyces sp. isolated from the medicinal plant Urospermum picroides. Phytochemistry 69:1716–1725Google Scholar
  9. Aly AH, Debbab A, Proksch P (2011) Fungal endophytes: unique plant inhabitants with great promises. Appl microbiol Biotechnol 90:1829–1845Google Scholar
  10. Amin N (2013) Diversity of endophytic fungi from root of Maize var. Pulut (waxy corn local variety of South Sulawesi, Indonesia). Int J Curr Microbiol App Sci 2:148–154Google Scholar
  11. Amirita A, Sindhu P, Swetha J, Vasanthi N, Kannan K (2012) Enumeration of endophytic fungi from medicinal plants and screening of extracellular enzymes. World J Sci Technol 2:13–19Google Scholar
  12. Anbu P, Noh M-J, Kim D-H, Seo J-S, Hur B-K, Min KH (2011) Screening and optimization of extracellular lipases by Acinetobacter species isolated from oil-contaminated soil in South Korea. Afr J Biotechnol 10:4147–4156Google Scholar
  13. Anderson AJ, Kwon S-I, Carnicero A, Falcón MA (2005) Two isolates of Fusarium proliferatum from different habitats and global locations have similar abilities to degrade lignin. FEMS Microbiol Lett 249:149–155Google Scholar
  14. Aranda FJ, Teruel JA, Ortiz A (2005) Further aspects on the hemolytic activity of the antibiotic lipopeptide iturin A. Biochim Biophys Acta Biomembr 1713:51–56Google Scholar
  15. Aravindan R, Anbumathi P, Viruthagiri T (2007) Lipase applications in food industry. Indian J Biotechnol 6:141–158Google Scholar
  16. Arivudainambi UE, Anand TD, Shanmugaiah V, Karunakaran C, Rajendran A (2011) Novel bioactive metabolites producing endophytic fungus Colletotrichum gloeosporioides against multidrug-resistant Staphylococcus aureus. FEMS Immunol Med Microbiol 61:340–345Google Scholar
  17. Arora J, Ramawat KG (2017) An introduction to endophytes. In: Maheshwari D (ed) Endophytes: biology and biotechnology. Sustainable development and biodiversity, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-66541-2_1 Google Scholar
  18. Asaf S, Hamayun M, Khan AL, Waqas M, Khan MA, Jan R, Lee I-J, Hussain A (2018) Salt tolerance of Glycine max. L induced by endophytic fungus Aspergillus flavus CSH1, via regulating its endogenous hormones and antioxidative system. Plant Physiol Biochem 128:13–23Google Scholar
  19. Ayob FW, Simarani K (2016) Endophytic filamentous fungi from a Catharanthus roseus: identification and its hydrolytic enzymes. Saudi Pharm J 24:273–278Google Scholar
  20. Azevedo JL, Maccheroni W Jr, Pereira JO, de Araújo WL (2000) Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Electron J Biotech 3:15–16Google Scholar
  21. Bacon CW, White JF (2000) Physiological adaptations in the evolution of endophytism in the Clavicipitaceae. In: Redlin SC, Carris LM (eds) Microbial endophytes. Marcel Dekker, New York, pp 237–261Google Scholar
  22. Bal HB, Das S, Dangar TK, Adhya TK (2013) ACC deaminase and IAA producing growth promoting bacteria from the rhizosphere soil of tropical rice plants. J Basic Microbiol 53:972–984Google Scholar
  23. Barr DP, Aust SD (1994) Mechanisms white rot fungi use to degrade pollutants. Environ Sci Technol 28:78A–87AGoogle Scholar
  24. Barranco FT, Saalfield SL, Tenbus FJ, Shedd BP (2012) Subsurface fate and transport of chemicals. In: Gulliver J (ed) Transport and fate of chemicals in the environment. Springer, New York. https://doi.org/10.1007/978-1-4614-5731-2_13 Google Scholar
  25. Barrasa J, Martínez A, Martínez M (2009) Isolation and selection of novel basidiomycetes for decolorization of recalcitrant dyes. Folia Microbiol 54(1):59. https://doi.org/10.1007/s12223-009-0009-6 Google Scholar
  26. Bashyal BP, Wijeratne EK, Faeth SH, Gunatilaka AL (2005) Globosumones A−C, cytotoxic orsellinic acid esters from the Sonoran desert endophytic fungus Chaetomium globosum. J Nat Prod 68:724–728Google Scholar
  27. Battestin V, Macedo GA (2007) Effects of temperature, pH and additives on the activity of tannase produced by Paecilomyces variotii. Electron J Biotechnol 10:191–199Google Scholar
  28. Bezerra J, Santos M, Svedese V, Lima D, Fernandes M, Paiva L, Souza-Motta C (2012) Richness of endophytic fungi isolated from Opuntia ficus-indica Mill.(Cactaceae) and preliminary screening for enzyme production. World J Microbiol Biotechnol 28:1989–1995Google Scholar
  29. Bezerra JD, Nascimento CC, Barbosa RN, da Silva DC, Svedese VM, Silva-Nogueira EB, Gomes BS, Paiva LM, Souza-Motta CM (2015) Endophytic fungi from medicinal plant Bauhinia forficata: diversity and biotechnological potential. Braz J Microbiol 46:49–57Google Scholar
  30. Bhagobaty R, Joshi S (2009) Promotion of seed germination of Green gram and Chick pea by Penicillium verruculosum RS7PF, a root endophytic fungus of Potentilla fulgens L. Advanced Biotech 8:16–18Google Scholar
  31. Bhat M, Bhat S (1997) Cellulose degrading enzymes and their potential industrial applications. Biotechnology Adv 15:583–620Google Scholar
  32. Bilal L, Asaf S, Hamayun M, Gul H, Iqbal A, Ullah I, Lee I-J, Hussain A (2018) Plant growth promoting endophytic fungi Aspergillus fumigatus TS1 and Fusarium proliferatum BRL1 produce gibberellins and regulates plant endogenous hormones. Symbiosis 97:1–11. https://doi.org/10.1007/s13199-018-0545-4 Google Scholar
  33. Biswas S, Kundu DK, Mazumdar SP, Saha AR, Majumdar B, Ghorai AK, Ghosh D, Yadav AN, Saxena AK (2018) Study on the activity and diversity of bacteria in a New Gangetic alluvial soil (Eutrocrept) under rice-wheatjute cropping system. Journal of Environmental Biology 39(3):379–386Google Scholar
  34. Biz A, Farias FC, Motter FA, de Paula DH, Richard P, Krieger N, Mitchell DA (2014) Pectinase activity determination: an early deceleration in the release of reducing sugars throws a spanner in the works. PLoS One 9:e109529. https://doi.org/10.1371/journal.pone.0109529 Google Scholar
  35. Bogner CW, Kariuki GM, Elashry A, Sichtermann G, Buch A-K, Mishra B, Thines M, Grundler FM, Schouten A (2016) Fungal root endophytes of tomato from Kenya and their nematode biocontrol potential. Mycol Progress. https://doi.org/10.1007/s11557-016-1169-9
  36. Bogner CW, Kamdem RS, Sichtermann G, Matthäus C, Hölscher D, Popp J, Proksch P, Grundler FM, Schouten A (2017) Bioactive secondary metabolites with multiple activities from a fungal endophyte. Microbial Biotechnol 10:175–188Google Scholar
  37. Bömke C, Tudzynski B (2009) Diversity, regulation, and evolution of the gibberellin biosynthetic pathway in fungi compared to plants and bacteria. Phytochemistry 70:1876–1893Google Scholar
  38. Bourbonnais R, Paice MG (1990) Oxidation of non-phenolic substrates: an expanded role for laccase in lignin biodegradation. FEBS Lett 267:99–102Google Scholar
  39. Braddock RJ (1981) Pectinase treatment of raw orange juice and subsequent quality changes in 60o Brix concentrate. P Fl St Hortic Soc 94:270–273Google Scholar
  40. Breen J (1994) Acremonium endophyte interactions with enhanced plant resistance to insects. Annu Rev Entomol 39:401–423Google Scholar
  41. Brem D, Leuchtmann A (2001) Epichloë grass endophytes increase herbivore resistance in the woodland grass Brachypodium sylvaticum. Oecologia 126:522–530Google Scholar
  42. Butt MS, Tahir-Nadeem M, Ahmad Z, Sultan MT (2008) Xylanases and Their Applications in Baking Industry. Food Technol Biotechnol 46:22–31Google Scholar
  43. Butterworth J, Morgan E, Percy G (1972) The structure of azadirachtin; the functional groups. J Chem Soc Perkin Trans 1:2445–2450Google Scholar
  44. Cabezas L, Calderon C, Medina LM, Bahamon I, Cardenas M, Bernal AJ, Gonzalez A, Restrepo S (2012) Characterization of cellulases of fungal endophytes isolated from Espeletia spp. J Microbiol 50:1009–1013Google Scholar
  45. Cañas AI, Camarero S (2010) Laccases and their natural mediators: biotechnological tools for sustainable eco-friendly processes. Biotechnol Adv 28:694–705Google Scholar
  46. Carvalho CR, Gonçalves VN, Pereira CB, Johann S, Galliza IV, Alves TM, Rabello A, Sobral ME, Zani CL, Rosa CA (2012) The diversity, antimicrobial and anticancer activity of endophytic fungi associated with the medicinal plant Stryphnodendron adstringens (Mart.) Coville (Fabaceae) from the Brazilian savannah. Symbiosis 57:95–107Google Scholar
  47. Cavalcanti RMF, Ornela P, Jorge JA, Guimarães L (2017) Screening, selection and optimization of the culture conditions for tannase production by endophytic fungi isolated from caatinga. J Appl Biol Biotechnol 5:1–9Google Scholar
  48. Chabannes M, Ruel K, Yoshinaga A, Chabbert B, Jauneau A, Joseleau JP, Boudet AM (2001) In situ analysis of lignins in transgenic tobacco reveals a differential impact of individual transformations on the spatial patterns of lignin deposition at the cellular and subcellular levels. Plant J 28:271–282Google Scholar
  49. Chadha N, Prasad R, Varma A (2015) Plant promoting activities of fungal endophytes associated with tomato roots from central Himalaya, India and their interaction with Piriformosporaindica. Int J Pharm Bio Sci 6:333–343Google Scholar
  50. Chandrappa C, Anitha R, Jyothi P, Rajalakshmi K, Seema Mahammadi H, Govindappa M (2013) Phytochemical analysis and antibacterial activity of Endophytes of Embelia Tsjeriam cottam Linn. Int J Pharma Bio Sci 3:201–203Google Scholar
  51. Chaudhri A, Suneetha V (2012) Microbially derived pectinases: a review. IOSR J Pharm Biol Sci 2:1–5Google Scholar
  52. Chen XM, Dong HL, Hu KX, Sun ZR, Chen J, Guo SX (2010) Diversity and antimicrobial and plant-growth-promoting activities of endophytic fungi in Dendrobium loddigesii Rolfe. J Plant Growth Regul 29:328–337Google Scholar
  53. Chen Z, Song Y, Chen Y, Huang H, Zhang W, Ju J (2012) Cyclic heptapeptides, cordyheptapeptides C–E, from the marine-derived fungus Acremonium persicinum SCSIO 115 and their cytotoxic activities. J Nat Prod 75:1215–1219Google Scholar
  54. Chen G-D, Chen Y, Gao H, Shen L-Q, Wu Y, Li XX, Li Y, Guo LD, Cen YZ, Yao X-S (2013) Xanthoquinodins from the endolichenic fungal strain Chaetomium elatum. J Nat Prod 76:702–709Google Scholar
  55. Choi W-Y, Rim S-O, Lee J-H, Lee J-M, Lee I-J, Cho K-J, Rhee I-K, Kwon J-B, Kim J-G (2005) Isolation of gibberellins-producing fungi from the root of several Sesamum indicum plants. J Microbiol Biotechnol 15:22–28Google Scholar
  56. Chow Y, Ting AS (2015) Endophytic L-asparaginase-producing fungi from plants associated with anticancer properties. J Adv Res 6:869–876Google Scholar
  57. Clark R, Lee SH (2016) Anticancer properties of capsaicin against human cancer. Anticancer Res 36:837–843Google Scholar
  58. Clay K, Holah J (1999) Fungal endophyte symbiosis and plant diversity in successional fields. Science 285:1742–1744Google Scholar
  59. Colla G, Rouphael Y, Bonini P, Cardarelli M (2015) Coating seeds with endophytic fungi enhances growth, nutrient uptake, yield and grain quality of winter wheat. Int J Plant Prot 9:171–189Google Scholar
  60. Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29:3–23Google Scholar
  61. Comby M, Gacoin M, Robineau M, Rabenoelina F, Ptas S, Dupont J, Profizi C, Baillieul F (2017) Screening of wheat endophytes as biological control agents against Fusarium head blight using two different in vitro tests. Microbiol Res 202:11–20Google Scholar
  62. Correa A, Pacheco S, Mechaly AE, Obal G, Béhar G, Mouratou B, Oppezzo P, Alzari PM, Pecorari F (2014) Potent and specific inhibition of glycosidases by small artificial binding proteins (Affitins). PLoS One 9:e97438Google Scholar
  63. Costa JM, Loper JE (1994) Characterization of siderophore production by the biological control agent Enterobacter cloacae. MPMI 7:440–448Google Scholar
  64. Costa-Silva TA, Nogueira MA, Fernandes Souza CR, Oliveira WP, Said S (2011) Lipase production by endophytic fungus Cercospora kikuchii: stability of enzymatic activity after spray drying in the presence of carbohydrates. Drying Technol 29:1112–1119Google Scholar
  65. Cui J-L, Guo S-X, Xiao P-G (2011) Antitumor and antimicrobial activities of endophytic fungi from medicinal parts of Aquilaria sinensis. J Zhejiang Univ Sci B 12:385–392Google Scholar
  66. Dai C-C, Tian L-S, Zhao Y-T, Chen Y, Xie H (2010) Degradation of phenanthrene by the endophytic fungus Ceratobasidum stevensii found in Bischofia polycarpa. Biodegradation 21:245–255Google Scholar
  67. Dastogeer KM, Li H, Sivasithamparam K, Jones MG, Wylie SJ (2018) Fungal endophytes and a virus confer drought tolerance to Nicotiana benthamiana plants through modulating osmolytes, antioxidant enzymes and expression of host drought responsive genes. Environ Exper Bot 149:95–108Google Scholar
  68. De Bary A (1866) Morpholodie und Physiologie del Pilze. Flechten und Myxomyceten, Engelmann, LeipzigGoogle Scholar
  69. De Siqueira VM, Conti R, de Araújo JM, Souza-Motta CM (2011) Endophytic fungi from the medicinal plant Lippia sidoides Cham. and their antimicrobial activity. Symbiosis 53:89–95Google Scholar
  70. De Souza Leite T, Cnossen-Fassoni A, Pereira OL, Mizubuti ESG, de Araújo EF, de Queiroz MV (2013) Novel and highly diverse fungal endophytes in soybean revealed by the consortium of two different techniques. J Microbiol 51:56–69Google Scholar
  71. Del Giudice L, Massardo DR, Pontieri P, Bertea CM, Mombello D, Carata E, Tredici SM, Talà A, Mucciarelli M, Groudeva VI (2008) The microbial community of Vetiver root and its involvement into essential oil biogenesis. Environ Microbiol 10:2824–2841Google Scholar
  72. Demain AL, Sanchez S (2009) Microbial drug discovery: 80 years of progress. J Antibiot 62:5–16Google Scholar
  73. Dhouib A, Hamza M, Zouari H, Mechichi T, Hmidi R, Labat M, Martinez MJ, Sayadi S (2005) Screening for ligninolytic enzyme production by diverse fungi from Tunisia. World J Microbiol Biotechnol 21:1415–1423Google Scholar
  74. Ding G, Li Y, Fu S, Liu S, Wei J, Che Y (2008) Ambuic acid and torreyanic acid derivatives from the endolichenic fungus Pestalotiopsis sp. J Nat Prod 72:182–186Google Scholar
  75. Dissanayake RK, Ratnaweera PB, Williams DE, Wijayarathne CD, Wijesundera RL, Andersen RJ, de Silva ED (2016) Antimicrobial activities of endophytic fungi of the Sri Lankan aquatic plant Nymphaea nouchali and chaetoglobosin A and C, produced by the endophytic fungus Chaetomium globosum. Mycology 7:1–8Google Scholar
  76. Dos Santos Souza B, dos Santos TT (2017) Endophytic fungi in economically important plants: ecological aspects, diversity and potential biotechnological applications. J Bio Food Sci 4:113–126Google Scholar
  77. Dos Santos TT, de Souza Leite T, de Queiroz CB, de Araújo EF, Pereira OL, de Queiroz MV (2016) High genetic variability in endophytic fungi from the genus Diaporthe isolated from common bean (Phaseolus vulgaris L.) in Brazil. J App Microbiol 120:388–401Google Scholar
  78. Dou Y, Wang X, Jiang D, Wang H, Jiao Y, Lou H, Wang X (2014) Metabolites from Aspergillus versicolor, an endolichenic fungus from the lichen Lobaria retigera. Drug Discov Ther 8:84–88Google Scholar
  79. Durand F, Gounel S, Mano N (2013) Purification and characterization of a new laccase from the filamentous fungus Podospora anserina. Prot Expr Purif 88:61–66Google Scholar
  80. Dutta S, Mishra A, Kumar BD (2008) Induction of systemic resistance against fusarial wilt in pigeon pea through interaction of plant growth promoting rhizobacteria and rhizobia. Soil Biol Biochem 40:452–461Google Scholar
  81. Elfita E, Muharni M, Munawar M, Legasari L, Darwati D (2011) Antimalarial compounds from endophytic fungi of Brotowali (Tinaspora crispa L). Indones J Chemis 11:53–58Google Scholar
  82. El-Zayat S (2008) Preliminary studies on laccase production by Chaetomium globosum an endophytic fungus in Glinus lotoides. Am Eurasian J Agric Environ Sci 3:86–90Google Scholar
  83. Erbert C, Lopes AA, Yokoya NS, Furtado NA, Conti R, Pupo MT, Lopes JLC, Debonsi HM (2012) Antibacterial compound from the endophytic fungus Phomopsis longicolla isolated from the tropical red seaweed Bostrychia radicans. Bot Mar 55:435–440Google Scholar
  84. Escudero N, Ferreira SR, Lopez-Moya F, Naranjo-Ortiz MA, Marin-Ortiz AI, Thornton CR, Lopez-Llorca LV (2016) Chitosan enhances parasitism of Meloidogyne javanica eggs by the nematophagous fungus Pochonia chlamydosporia. Fungal Biol 120:572–585Google Scholar
  85. Evans CS, Dutton MV, Guillén F, Veness RG (1994) Enzymes and small molecular mass agents involved with lignocellulose degradation. FEMS Microbiol Rev 13:235–239Google Scholar
  86. Eyberger AL, Dondapati R, Porter JR (2006) Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. J Nat Prod 69:1121–1124Google Scholar
  87. Fareed S, Jadoon UN, Ullah I, Ayub M, Jadoon MUR, Bibi Z, Waqas M, Nisa S (2017) Isolation and biological evaluation of endophytic fungus from Ziziphus nummularia. J Entomol Zool Stud 5(3):32–38Google Scholar
  88. Fernandes EG, Pereira OL, da Silva CC, Bento CBP, de Queiroz MV (2015) Diversity of endophytic fungi in Glycine max. Microbiol Res 181:84–92Google Scholar
  89. Fillat Ú, Martín-Sampedro R, Macaya-Sanz D, Martín JA, Ibarra D, Martínez MJ, Eugenio ME (2016) Screening of eucalyptus wood endophytes for laccase activity. Process Biochem 51:589–598Google Scholar
  90. Fisher P, Petrini O (1992) Fungal saprobes and pathogens as endophytes of rice (Oryza sativa L.). New Phytol 120:137–143Google Scholar
  91. Fisher P, Graf F, Petrini L, Sutton B, Wookey P (1995) Fungal endophytes of Dryas octopetala from a high arctic polar semidesert and from the Swiss Alps. Mycologia 87:319–323Google Scholar
  92. Fouda AH, Hassan SE-D, Eid AM, Ewais EE-D (2015) Biotechnological applications of fungal endophytes associated with medicinal plant Asclepias sinaica (Bioss.). Ann Agric Sci 60:95–104Google Scholar
  93. Freeman EM (1904) I.—The seed-fungus of Lolium temulentum, L., the darnel. Phil Trans R Soc Lond B 196:1–27Google Scholar
  94. Fröhlich J, Hyde KD (1999) Biodiversity of palm fungi in the tropics: are global fungal diversity estimates realistic? Biodivers Conserv 8:977–1004Google Scholar
  95. Fu J, Zhou Y, Li H-F, Ye Y-H, Guo J-H (2011) Antifungal metabolites from Phomopsis sp. By254, an endophytic fungus in Gossypium hirsutum. A J Microbiol Res 5:1231–1236Google Scholar
  96. Gadd GM (2000) Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Curr Opin Biotechnol 11:271–279Google Scholar
  97. Gamboa MA, Bayman P (2001) Communities of endophytic fungi in leaves of a tropical timber tree (Guarea guidonia: Meliaceae) 1. Biotropica 33:352–360Google Scholar
  98. Gangadevi V, Muthumary J (2008) Taxol, an anticancer drug produced by an endophytic fungus Bartalinia robillardoides Tassi, isolated from a medicinal plant, Aegle marmelos Correa ex Roxb. W J Microbiol Biotechnol 24:717Google Scholar
  99. Gao Y, Zhao JT, Zu YG, Fu YJ, Wang W, Luo M, Efferth T (2011) Characterization of five fungal endophytes producing Cajaninstilbene acid isolated from pigeon pea [Cajanus cajan (L.) Millsp.]. PLoS One 6:e27589Google Scholar
  100. Gao Y, Zhao J, Zu Y, Fu Y, Liang L, Luo M, Wang W, Efferth T (2012) Antioxidant properties, superoxide dismutase and glutathione reductase activities in HepG2 cells with a fungal endophyte producing apigenin from pigeon pea [Cajanus cajan (L.) Millsp.]. Food Res Int 49:147–152Google Scholar
  101. García A, Rhoden SA, Rubin Filho CJ, Nakamura CV, Pamphile JA (2012) Diversity of foliar endophytic fungi from the medicinal plant Sapindus saponaria L. and their localization by scanning electron microscopy. Biol Res 45:139–148Google Scholar
  102. Garg G, Singh A, Kaur A, Singh R, Kaur J, Mahajan R (2016) Microbial pectinases: an ecofriendly tool of nature for industries. 3 Biotech 6:47. https://doi.org/10.1007/s13205-016-0371-4 Google Scholar
  103. Ginalska G, Bancerz R, Korniłłowicz-Kowalska T (2004) A thermostable lipase produced by a newly isolated Geotrichum-like strain, R59. J Ind Microbiol Biotechnol 31:177–182Google Scholar
  104. Gond S, Verma V, Kumar A, Kumar V, Kharwar R (2007) Study of endophytic fungal community from different parts of Aegle marmelos Correae (Rutaceae) from Varanasi (India). World J Microbiol Biotechnol 23:1371–1375Google Scholar
  105. Gond SK, Mishra A, Sharma VK, Verma SK, Kumar J, Kharwar RN, Kumar A (2012) Diversity and antimicrobial activity of endophytic fungi isolated from Nyctanthes arbor-tristis, a well-known medicinal plant of India. Mycoscience 53:113–121Google Scholar
  106. Gong L, Guo S (2009) Endophytic fungi from Dracaena cambodiana and Aquilaria sinensis and their antimicrobial activity. Afr J Biotechnol 8(5):731–736Google Scholar
  107. Gontia-Mishra I, Tiwari S (2013) Molecular characterization and comparative phylogenetic analysis of phytases from fungi with their prospective applications. Food Technol Biotechnol 51:313–326Google Scholar
  108. Gonzaga L, Costa L, Santos T, Araújo E, Queiroz M (2015) Endophytic fungi from the genus Colletotrichum are abundant in the Phaseolus vulgaris and have high genetic diversity. J Appl Microbiol 118:485–496Google Scholar
  109. González MC, Buenrostro-Figueroa J, Durán LR, Zárate P, Rodríguez R, Rodríguez-Jasso RM, Ruiz HA, Aguilar CN (2017) Tannases. In: Current developments in biotechnology and bioengineering. Elsevier, Amsterdam/Boston, pp 471–489Google Scholar
  110. Gopinath SC, Anbu P, Lakshmipriya T, Hilda A (2013) Strategies to characterize fungal lipases for applications in medicine and dairy industry. Biomed Res Int. https://doi.org/10.1155/2013/154549
  111. Govindachari T, Viswanathan N (1972) 9-Methoxycamptothecin. A new alkaloid from Mappia foetida Miers. Ind J Chem 10:453–454Google Scholar
  112. Goyal S, Ramawat K, Mérillon J (2016) Different shades of fungal metabolites: an overview. In: Merillon JM, Ramawat K (eds) Fungal metabolites. Reference series in phytochemistry. Springer, Cham, pp 1–29Google Scholar
  113. Gray J, Bemiller J (2003) Bread staling: molecular basis and control. Compr Rev Food Sci Food Saf 2:1–21Google Scholar
  114. Guillén F, Martınez Ma J, Muñoz C, Martınez AT (1997) Quinone redox cycling in the ligninolytic fungus Pleurotus eryngii leading to extracellular production of superoxide anion radical. Arch Biochem Biophys 339:190–199Google Scholar
  115. Guillén F, Martínez MJ, Gutiérrez A, Del Rio J (2005) Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int Microbiol 8:195–204Google Scholar
  116. Guo B, Li H, Zhang L (1998) Isolation of a fungus producing vinblastine. J Yunnan Uni (Nat Sci) 20:214–215Google Scholar
  117. Guo B, Dai J-R, Ng S, Huang Y, Leong C, Ong W, Carté BK (2000) Cytonic acids A and B: novel tridepside inhibitors of hCMV protease from the endophytic fungus Cytonaema species. J Nat Prod 63:602–604Google Scholar
  118. Guo B, Wang Y, Sun X, Tang K (2008) Bioactive natural products from endophytes: a review. App Biochem Microbiol 44:136–142Google Scholar
  119. Gutierrez A, Caramelo L, Prieto A, Martínez MJ, Martinez AT (1994) Anisaldehyde production and aryl-alcohol oxidase and dehydrogenase activities in ligninolytic fungi of the genus Pleurotus. App Environ Microbiol 60:1783–1788Google Scholar
  120. Hallmann J, Quadt-Hallmann A, Mahaffee W, Kloepper J (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914Google Scholar
  121. Hamayun M, Khan SA, Ahmad N, Tang D-S, Kang S-M, Na C-I, Sohn E-Y, Hwang Y-H, Shin D-H, Lee B-H (2009a) Cladosporium sphaerospermum as a new plant growth-promoting endophyte from the roots of Glycine max (L.) Merr. World J Microbiol Biotechnol 25:627–632Google Scholar
  122. Hamayun M, Khan SA, Khan AL, Rehman G, Sohn E-Y, Shah AA, Kim S-K, Joo G-J, Lee I-J (2009b) Phoma herbarum as a new gibberellin-producing and plant growth-promoting fungus. J Microbiol Biotechnol 19:1244–1249Google Scholar
  123. Hamayun M, Khan SA, Khan MA, Khan AL, Kang S-M, Kim S-K, Joo G-J, Lee I-J (2009c) Gibberellin production by pure cultures of a new strain of Aspergillus fumigatus. World J Microbiol Biotechnol 25:1785–1792Google Scholar
  124. Hamayun M, Khan SA, Khan AL, Rehman G, Kim Y-H, Iqbal I, Hussain J, Sohn E-Y, Lee I-J (2010) Gibberellin production and plant growth promotion from pure cultures of Cladosporium sp. MH-6 isolated from cucumber (Cucumis sativus L.). Mycologia 102:989–995Google Scholar
  125. Hamayun M, Hussain A, Khan SA, Kim H-Y, Khan AL, Waqas M, Irshad M, Iqbal A, Rehman G, Jan S (2017) Gibberellins producing endophytic fungus Porostereum spadiceum AGH786 rescues growth of salt affected soybean. Front Microbiol. https://doi.org/10.3389/fmicb.2017.00686
  126. Hanada RE, Pomella AWV, Costa HS, Bezerra JL, Loguercio LL, Pereira JO (2010) Endophytic fungal diversity in Theobroma cacao (cacao) and T. grandiflorum (cupuaçu) trees and their potential for growth promotion and biocontrol of black-pod disease. Fungal Biol 114:901–910Google Scholar
  127. Harish S, Kavino M, Kumar N, Balasubramanian P, Samiyappan R (2009) Induction of defense-related proteins by mixtures of plant growth promoting endophytic bacteria against Banana bunchy top virus. Biol Control 51:16–25Google Scholar
  128. Harnpicharnchai P, Champreda V, Sornlake W, Eurwilaichitr L (2009) A thermotolerant β-glucosidase isolated from an endophytic fungi, Periconia sp., with a possible use for biomass conversion to sugars. Prot Expr Purif 67:61–69Google Scholar
  129. Haros M, Rosell CM, Benedito C (2001) Fungal phytase as a potential breadmaking additive. Eur Food Res Technol 213:317–322Google Scholar
  130. Harper JK, Arif AM, Ford EJ, Strobel GA, Porco JA, Tomer DP, Oneill KL, Heider EM, Grant DM (2003) Pestacin: a 1, 3-dihydro isobenzofuran from Pestalotiopsis microspora possessing antioxidant and antimycotic activities. Tetrahedron 59:2471–2476Google Scholar
  131. Harris AD, Ramalingam C (2010) Xylanases and its application in food industry: a review. J Exp Sci 1:1–11Google Scholar
  132. Hasan H (2002) Gibberellin and auxin-indole production by plant root-fungi and their biosynthesis under salinity-calcium interaction. Acta Microbiol Immunol Hung 49:105–118Google Scholar
  133. Hassan SED, Liu A, Bittman S, Forge TA, Hunt DE, Hijri M, St-Arnaud M (2013) Impact of 12-year field treatments with organic and inorganic fertilizers on crop productivity and mycorrhizal community structure. Biol Fert Soils 49:1109–1121Google Scholar
  134. Hazalin NAMN, Ramasamy K, Lim SM, Cole AL, Majeed ABA (2012) Induction of apoptosis against cancer cell lines by four ascomycetes (endophytes) from Malaysian rainforest. Phytomedicine 19:609–617Google Scholar
  135. Heidarizadeh M, Rezaei PF, Shahabivand S (2018) Novel pectinase from Piriformospora indica, optimization of growth parameters and enzyme production in submerged culture condition. Turk J Biochem 43:289–295Google Scholar
  136. Higuchi T (2012) Biochemistry and molecular biology of wood. Springer, LondonGoogle Scholar
  137. Hoffman AM, Mayer SG, Strobel GA, Hess WM, Sovocool GW, Grange AH, Harper JK, Arif AM, Grant DM, Kelley-Swift EG (2008) Purification, identification and activity of phomodione, a furandione from an endophytic Phoma species. Phytochemistry 69:1049–1056Google Scholar
  138. Huang H, She Z, Lin Y, Vrijmoed L, Lin W (2007) Cyclic peptides from an endophytic fungus obtained from a mangrove leaf (Kandelia candel). J Nat Prod 70:1696–1699Google Scholar
  139. Huang W, Cai Y, Hyde K, Corke H, Sun M (2008) Biodiversity of endophytic fungi associated with 29 traditional Chinese medicinal plants. Fungal Divers 33:61–75Google Scholar
  140. Huang W, Cai Y, Surveswaran S, Hyde K, Corke H, Sun M (2009) Molecular phylogenetic identification of endophytic fungi isolated from three Artemisia species. Fungal Divers 36:69–88Google Scholar
  141. Huang Y-L, Zimmerman NB, Arnold AE (2018) Observations on the early establishment of foliar endophytic fungi in leaf discs and living leaves of a model woody angiosperm, Populus trichocarpa (Salicaceae). J Fungi (Basel, Switzerland). https://doi.org/10.3390/jof4020058
  142. Hung PQ, Kumar SM, Govindsamy V, Annapurna K (2007) Isolation and characterization of endophytic bacteria from wild and cultivated soybean varieties. Biol Fert Soils 44:155–162Google Scholar
  143. Impullitti A, Malvick D (2013) Fungal endophyte diversity in soybean. J Appl Microbiol 114:1500–1506Google Scholar
  144. Jacobsen T, Olsen J, Allermann K (1990) Substrate specificity of Geotrichum candidum lipase preparations. Biotechnol Lett 12:121–126Google Scholar
  145. Jalgaonwala RE, Mahajan RT (2014) Production of anticancer enzyme asparaginase from endophytic Eurotium sp. isolated from rhizomes of Curcuma longa. Euro J Exp Biol 4:36–43Google Scholar
  146. Jalgaonwala RE, Mohite BV, Mahajan RT (2017) A review: natural products from plant associated endophytic fungi. J Microbiol Biotechnol Research 1:21–32Google Scholar
  147. Jarvis AP, Morgan ED, Van Der Esch SA, Vitali F, Ley SV, Pape A (1997) Identification of azadirachtin in tissue-cultured cells of neem (Azadirachta indica). Nat Prod Lett 10:95–98Google Scholar
  148. Jennifer Mordue A, Simmonds MS, Ley SV, Blaney WM, Mordue W, Nasiruddin M, Nisbet AJ (1998) Actions of azadirachtin, a plant allelochemical, against insects. Pes Sci 54:277–284Google Scholar
  149. Jerry B (1994) A role of endophytic fungi in regulating nutrients and energy in plants within a desert ecosystem. International symposium and workshop on desertification in developed countries. Accessed on 2011/10/25Google Scholar
  150. Jha PN, Gupta G, Jha P, Mehrotra R (2013) Association of rhizospheric/endophytic bacteria with plants: a potential gateway to sustainable agriculture. Greener J Agr Sci 3:73–84Google Scholar
  151. Jin H, Yan Z, Liu Q, Yang X, Chen J, Qin B (2013) Diversity and dynamics of fungal endophytes in leaves, stems and roots of Stellera chamaejasme L. in northwestern China. Antonie Van Leeuwenhoek 104:949–963Google Scholar
  152. Kalyanasundaram I, Nagamuthu J, Srinivasan B, Pachayappan A, Muthukumarasamy S (2015) Production, purification and characterisation of extracellular L-asparaginase from salt marsh fungal endophytes. World J Pharm Sci 4:663–677Google Scholar
  153. Kaul S, Ahmed M, Zargar K, Sharma P, Dhar MK (2013) Prospecting endophytic fungal assemblage of Digitalis lanata Ehrh. (foxglove) as a novel source of digoxin: a cardiac glycoside. 3 Biotech 3:335–677Google Scholar
  154. Kaur R, Saxena A, Sangwan P, Yadav AN, Kumar V, Dhaliwal HS (2017) Production and characterization of a neutral phytase of Penicillium oxalicum EUFR-3 isolated from Himalayan region. Nus Biosci 9:68–76Google Scholar
  155. Kawaide H (2006) Biochemical and molecular analyses of gibberellin biosynthesis in fungi. Biosci Biotechnol Biochem 70:583–590Google Scholar
  156. Kedar A, Rathod D, Yadav A, Agarkar G, Rai M (2014) Endophytic Phoma sp. isolated from medicinal plants promote the growth of Zea mays. Nus Biosci 6:132–139Google Scholar
  157. Keyser CA, Jensen B, Meyling NV (2016) Dual effects of Metarhizium spp. and Clonostachys rosea against an insect and a seed-borne pathogen in wheat. Pest Manag Sci 72:517–526Google Scholar
  158. Khan SA, Hamayun M, Yoon H, Kim H-Y, Suh S-J, Hwang S-K, Kim J-M, Lee I-J, Choo Y-S, Yoon U-H (2008) Plant growth promotion and Penicillium citrinum. BMC Microbiol. https://doi.org/10.1186/1471-2180-8-231
  159. Khan SA, Hamayun M, Kim H-Y, Yoon H-J, Lee I-J, Kim J-G (2009a) Gibberellin production and plant growth promotion by a newly isolated strain of Gliomastix murorum. W J Microbiol Biotechnol 25:829–833Google Scholar
  160. Khan SA, Hamayun M, Kim H-Y, Yoon H-J, Seo J-C, Choo Y-S, Lee I-J, Rhee I-K, Kim J-G (2009b) A new strain of Arthrinium phaeospermum isolated from Carex kobomugi Ohwi is capable of gibberellin production. Biotechnol Lett 31:283–287Google Scholar
  161. Khan AL, Hamayun M, Ahmad N, Waqas M, Kang SM, Kim YH, Lee IJ (2011a) Exophiala sp. LHL08 reprograms Cucumis sativus to higher growth under abiotic stresses. Physiol Plant 143:329–343Google Scholar
  162. Khan AL, Hamayun M, Kim Y-H, Kang S-M, Lee I-J (2011b) Ameliorative symbiosis of endophyte (Penicillium funiculosum LHL06) under salt stress elevated plant growth of Glycine max L. Plant Physiol Biochem 49:852–861Google Scholar
  163. Khan AL, Hamayun M, Hussain J, Kang S-M, Lee I-J (2012a) The newly isolated endophytic fungus Paraconiothyrium sp. LK1 produces ascotoxin. Molecules 17:1103–1112Google Scholar
  164. Khan AL, Hamayun M, Khan SA, Kang S-M, Shinwari ZK, Kamran M, ur Rehman S, Kim JG, Lee IJ (2012b) Pure culture of Metarhizium anisopliae LHL07 reprograms soybean to higher growth and mitigates salt stress. World J Microbiol Biotechnol 28:1483–1494Google Scholar
  165. Khan AL, Hussain J, Al-Harrasi A, Al-Rawahi A, Lee I-J (2015) Endophytic fungi: resource for gibberellins and crop abiotic stress resistance. Crit Rev Biotechnol 35:62–74Google Scholar
  166. Khan AL, Shahzad R, Al-Harrasi A, Lee IJ (2017) Endophytic microbes: a resource for producing extracellular enzymes. In: Maheshwari D, Annapurna K (eds) Endophytes: crop productivity and protection. Sustainable development and biodiversity, vol 16. Springer, ChamGoogle Scholar
  167. Kharwar RN, Verma VC, Kumar A, Gond SK, Harper JK, Hess WM, Lobkovosky E, Ma C, Ren Y, Strobel GA (2009) Javanicin, an antibacterial naphthaquinone from an endophytic fungus of neem, Chloridium sp. Curr Microbiol 58:233–238Google Scholar
  168. Kharwar R, Maurya A, Verma V, Kumar A, Gond S, Mishra A (2012) Diversity and antimicrobial activity of endophytic fungal community isolated from medicinal plant Cinnamomum camphora. Proc Natl Acad Sci India Section B Biol Sci 82:557–565Google Scholar
  169. Khiralla A, Spina R, Yagi S, Mohamed I, Laurain-Mattar D (2017) Endophytic fungi: occurrence, classification, function and natural products. In: Hughes E (ed) Endophytic fungi: diversity, characterization and biocontrol. Nova Science Publishers, New York, pp 1–38Google Scholar
  170. Kim S, Shin D-S, Lee T, Oh K-B (2004) Periconicins, two new fusicoccane diterpenes produced by an endophytic fungus Periconia sp. with antibacterial activity. J Nat Prod 67:448–450Google Scholar
  171. Kim JS, Gao J, Daniel G (2015) Cytochemical and immunocytochemical characterization of wood decayed by the white rot fungus Pycnoporus sanguineus I. preferential lignin degradation prior to hemicelluloses in Norway spruce wood. Int Biodeterior Biodegradation 105:30–40Google Scholar
  172. Kirti S, Reddy M (2013) Characterization of thermostable and alkalophilic lipase enzyme from endophytic fungus Leptosphaerulina sp. Ph.D. Thesis. http://hdl.handle.net/10266/2541
  173. Kjer J, Wray V, Edrada-Ebel R, Ebel R, Pretsch A, Lin W, Proksch P (2009) Xanalteric acids I and II and related phenolic compounds from an endophytic Alternaria sp. isolated from the mangrove plant Sonneratia alba. J Nat Prod 72:2053–2057Google Scholar
  174. Klenk A, Bokel M, Kraus W (1986) 3-Tigloylazadirachtol (tigloyl= 2-methylcrotonoyl), an insect growth regulating constituent of Azadirachta indica. J Chem Soc Chem Commun 0:523–524Google Scholar
  175. Köhl J, Lombaers C, Moretti A, Bandyopadhyay R, Somma S, Kastelein P (2015) Analysis of microbial taxonomical groups present in maize stalks suppressive to colonization by toxigenic Fusarium spp.: a strategy for the identification of potential antagonists. Biol Control 83:20–28Google Scholar
  176. Koukol O, Kolařík M, Kolářová Z, Baldrian P (2012) Diversity of foliar endophytes in wind-fallen Picea abies trees. Fungal Divers 54:69–77Google Scholar
  177. Kraus W, Bokel M, Klenk A, Pöhn H (1985) The structure of azadirachtin and 22, 23-dihydro-23β-methoxyazadirachtin. Tetrahedron Lett 26:6435–6438Google Scholar
  178. Krishnamurthy YL, Naik BS (2017) Endophytic fungi bioremediation. In: Maheshwari D, Annapurna K (eds) Endophytes: crop productivity and protection. Sustainable development and biodiversity, vol 16. Springer, ChamGoogle Scholar
  179. Kudalkar P, Strobel G, Riyaz-Ul-Hassan S, Geary B, Sears J (2012) Muscodor sutura, a novel endophytic fungus with volatile antibiotic activities. Mycoscience 53:319–325Google Scholar
  180. Kudanga T, Mwenje E (2005) Extracellular cellulase production by tropical isolates of Aureobasidium pullulans. Can J Microbiol 51:773–776Google Scholar
  181. Kumar S, Kaushik N (2013) Endophytic fungi isolated from oil-seed crop Jatropha curcas produces oil and exhibit antifungal activity. PLoS One 8:e56202Google Scholar
  182. Kumar A, Patil D, Rajamohanan PR, Ahmad A (2013) Isolation, purification and characterization of vinblastine and vincristine from endophytic fungus Fusarium oxysporum isolated from Catharanthus roseus. PLoS One 8:e71805Google Scholar
  183. Kumar M, Yadav AN, Tiwari R, Prasanna R, Saxena AK (2014) Evaluating the diversity of culturable thermotolerant bacteria from four hot springs of India. J Biodivers Biopros Dev 1:1–9Google Scholar
  184. Kumar V, Yadav AN, Saxena A, Sangwan P, Dhaliwal HS (2016) Unravelling rhizospheric diversity and potential of phytase producing microbes. SM J Biol 2:1009Google Scholar
  185. Kumar K, Yadav AN, Kumar V, Vyas P, Dhaliwal HS (2017a) Food waste: a potential bioresource for extraction of nutraceuticals and bioactive compounds. Biores Bioprocess. https://doi.org/10.1186/s40643-017-0148-6
  186. Kumar V, Yadav AN, Verema P, Sangwan P, Abhishake S, Singh B (2017b) β-Propeller phytases: diversity, catalytic attributes, current developments and potential biotechnological applications. Int J Biol Macromol 98:595–609Google Scholar
  187. Kumara PM, Shweta S, Vasanthakumari M, Sachin N, Manjunatha B, Jadhav SS, Ravikanth G, Ganeshaiah K, Shaanker RU (2014) Endophytes and plant secondary metabolite synthesis: molecular and evolutionary perspective. In: Advances in endophytic research. Springer, New Delhi, pp 177–190Google Scholar
  188. Kunamneni A, Camarero S, García-Burgos C, Plou FJ, Ballesteros A, Alcalde M (2008) Engineering and applications of fungal laccases for organic synthesis. Microbial Cell Factories. https://doi.org/10.1186/1475-2859-7-32
  189. Kurose D, Furuya N, Tsuchiya K, Tsushima S, Evans HC (2012) Endophytic fungi associated with Fallopia japonica (Polygonaceae) in Japan and their interactions with Puccinia polygoni-amphibii var. tovariae, a candidate for classical biological control. Fungal Biol 116:785–791Google Scholar
  190. Kusari S, Spiteller M (2011) Are we ready for industrial production of bioactive plant secondary metabolites utilizing endophytes? Nat Prod Rep 28:1203–1207Google Scholar
  191. Kusari S, Spiteller M (2012) Metabolomics of endophytic fungi producing associated plant secondary metabolites: progress, challenges and opportunities. In: Roessner U (ed) Metabolomics. InTech, Rijeka, pp 241–66Google Scholar
  192. Kusari S, Lamshöft M, Spiteller M (2009) Aspergillus fumigatus Fresenius, an endophytic fungus from Juniperus communis L. Horstmann as a novel source of the anticancer pro-drug deoxypodophyllotoxin. J App Microbiol 107:1019–1030Google Scholar
  193. Kusari S, Zuhlke S, Spiteller M (2011) Effect of artificial reconstitution of the interaction between the plant Camptotheca acuminata and the fungal endophyte Fusarium solani on camptothecin biosynthesis. J Nat Prod 74:764–775Google Scholar
  194. Kusari S, Verma VC, Lamshoeft M, Spiteller M (2012) An endophytic fungus from Azadirachta indica A. Juss. that produces azadirachtin. World J Microbiol Biotechnol 28:1287–1294Google Scholar
  195. Kusari P, Kusari S, Spiteller M, Kayser O (2013a) Endophytic fungi harbored in Cannabis sativa L.:diversity and potential as biocontrol agents against host plant-specific phytopathogens. Fungal Diversity 60:137–151Google Scholar
  196. Kusari S, Pandey SP, Spiteller M (2013b) Untapped mutualistic paradigms linking host plant and endophytic fungal production of similar bioactive secondary metabolites. Phytochemistry 91:81–87Google Scholar
  197. Kusari S, Singh S, Jayabaskaran C (2014) Rethinking production of Taxol®(paclitaxel) using endophyte biotechnology. Trends Biotechnol 32:304–311Google Scholar
  198. Larran S, Monaco C, Alippi H (2001) Endophytic fungi in leaves of Lycopersicon esculentum Mill. World J Microbiol Biotechnol 17:181–184Google Scholar
  199. Larran S, Perello A, Simon M, Moreno V (2002) Isolation and analysis of endophytic microorganisms in wheat (Triticum aestivum L.) leaves. World J Microbiol Biotechnol 18:683–686Google Scholar
  200. Larran S, Perelló A, Simón MR, Moreno V (2007) The endophytic fungi from wheat (Triticum aestivum L.). World J Microbiol Biotechnol 23:565–572Google Scholar
  201. Larran S, Siurana MPS, Caselles JR, Simón MR, Perelló A (2018) Fusarium sudanense, endophytic fungus causing typical symptoms of seedling blight and seed rot on wheat. J King Saud Uni-Sci. https://doi.org/10.1016/j.jksus.2018.07.005
  202. Lee JC, Lobkovsky E, Pliam NB, Strobel G, Clardy J (1995) Subglutinols A and B: immunosuppressive compounds from the endophytic fungus Fusarium subglutinans. J Org Chem 60:7076–7077Google Scholar
  203. Lee JC, Strobel GA, Lobkovsky E, Clardy J (1996) Torreyanic acid: a selectively cytotoxic quinone dimer from the endophytic fungus Pestalotiopsis microspora. J Org Chem 61:3232–3233Google Scholar
  204. Ley S, Denholm A, Wood A (1993) The chemistry of azadirachtin. Nat Prod Rep 10:109–157Google Scholar
  205. Li JY, Strobel GA (2001) Jesterone and hydroxy-jesterone antioomycete cyclohexenone epoxides from the endophytic fungus Pestalotiopsis jesteri. Phytochemistry 57:261–265Google Scholar
  206. Li J, Harper JK, Grant DM, Tombe BO, Bashyal B, Hess W, Strobel GA (2001) Ambuic acid, a highly functionalized cyclohexenone with antifungal activity from Pestalotiopsis spp. and Monochaetia sp. Phytochemistry 56:463–468Google Scholar
  207. Li GH, Yu ZF, Li X, Wang XB, Zheng LJ, Zhang KQ (2007a) Nematicidal metabolites produced by the endophytic fungus Geotrichum sp. AL4. Chem Biodivers 4:1520–1524Google Scholar
  208. Li WC, Zhou J, Guo SY, Guo LD (2007b) Endophytic fungi associated with lichens in Baihua mountain of Beijing, China. Fungal Divers 25:69–80Google Scholar
  209. Li M, Wu Y, Jiang F, Yu X, Tang K, Miao Z (2009) Isolation, identification and anticancer activity of an endophytic fungi from Juglans mandshurica. Zhongguo Zhong Yao Za Zhi 34:1623–1627Google Scholar
  210. Li H-Q, Li X-J, Wang Y-L, Zhang Q, Zhang A-L, Gao J-M, Zhang X-C (2011) Antifungal metabolites from Chaetomium globosum, an endophytic fungus in Ginkgo biloba. Biochem Sys Eco 39:876–879Google Scholar
  211. Li G, Wang H, Zhu R, Sun L, Wang L, Li M, Li Y, Liu Y, Zhao Z, Lou H (2012a) Phaeosphaerins A–F, cytotoxic perylenequinones from an endolichenic fungus, Phaeosphaeria sp. J Nat Prod 75:142–147Google Scholar
  212. Li H-Y, Wei D-Q, Shen M, Zhou Z-P (2012b) Endophytes and their role in phytoremediation. Fungal Divers 54:11–18Google Scholar
  213. Li G, Kusari S, Lamshöft M, Schüffler A, Laatsch H, Spiteller M (2014) Antibacterial secondary metabolites from an endophytic fungus, Eupenicillium sp. LG41. J Nat Prod 77:2335–2341Google Scholar
  214. Li Y, Yang J, Zhou X, Zhao W, Jian Z (2015) Isolation and identification of a 10-deacetyl baccatin-III-producing endophyte from Taxus wallichiana. App Biochem Biotechnol 175:2224–2231Google Scholar
  215. Lim PE, Mak K, Mohamed N, Noor AM (2003) Removal and speciation of heavy metals along the treatment path of wastewater in subsurface-flow constructed wetlands. Wat Sci Technol 48:307–313Google Scholar
  216. Lin Z-J, Lu Z-Y, Zhu T-J, Fang Y-C, Gu Q-Q, Zhu W-M (2008a) Penicillenols from Penicillium sp. GQ-7, an endophytic fungus associated with Aegiceras corniculatum. Chem Pharmaceu Bull 56:217–221Google Scholar
  217. Lin Z, Zhu T, Fang Y, Gu Q, Zhu W (2008b) Polyketides from Penicillium sp. JP-1, an endophytic fungus associated with the mangrove plant Aegiceras corniculatum. Phytochemistry 69:1273–1278Google Scholar
  218. Liu Y, Yang Q, Xia G, Huang H, Li H, Ma L, Lu Y, He L, Xia X, She Z (2015) Polyketides with α-glucosidase inhibitory activity from a mangrove endophytic fungus, Penicillium sp. HN29-3B1. J Nat Prod 78:1816–1822Google Scholar
  219. Liu Y, Nan L, Liu J, Yan H, Zhang D, Han X (2016) Isolation and identification of resveratrol-producing endophytes from wine grape Cabernet Sauvignon. SpringerPlus 5:1–13Google Scholar
  220. Maheshwari DK (2011) Bacteria in agrobiology: plant growth responses. Springer, BerlinGoogle Scholar
  221. Maheswari S, Rajagopal K (2013) Biodiversity of endophytic fungi in Kigelia pinnata during two different seasons. Curr Sci 104:515–518Google Scholar
  222. Makky EA, Yusoff MM (2015) Bioeconomy: pectinases purification and application of fermented waste from Thermomyces lanuginosus. J Med Bioeng 4(1):76–80Google Scholar
  223. Malfanova N, Kamilova F, Validov S, Shcherbakov A, Chebotar V, Tikhonovich I, Lugtenberg B (2011) Characterization of Bacillus subtilis HC8, a novel plant-beneficial endophytic strain from giant hogweed. Microbial Biotechnol 4:523–532Google Scholar
  224. Malik A (2004) Metal bioremediation through growing cells. Environ Int 30:261–278Google Scholar
  225. Mandels M (1985) Applications of cellulases. Portland Press Limited, Biochem Soc Trans 13:414–415. https://doi.org/10.1042/bst0130414 Google Scholar
  226. Marcenaro D, Valkonen JP (2016) Seedborne pathogenic fungi in common bean (Phaseolus vulgaris cv. INTA Rojo) in Nicaragua. PLoS One 11:e0168662Google Scholar
  227. Maria G, Sridhar K, Raviraja N (2005) Antimicrobial and enzyme activity of mangrove endophytic fungi of southwest coast of India. J Agri Technol 1:67–80Google Scholar
  228. Marinho AM, Rodrigues-Filho E, Moitinho MLR, Santos LS (2005) Biologically active polyketides produced by Penicillium janthinellum isolated as an endophytic fungus from fruits of Melia azedarach. J Braz Chem Soc 16:280–283Google Scholar
  229. Marlida Y, Delfita R, Gusmanizar N, Ciptaan G (2010) Identification characterization and production of phytase from endophytic fungi. World Acad Sci Eng Technol 65:1043–1046Google Scholar
  230. Marques NP, de Cassia Pereira J, Gomes E, da Silva R, Araújo AR, Ferreira H, Rodrigues A, Dussán KJ, Bocchini DA (2018) Cellulases and xylanases production by endophytic fungi by solid state fermentation using lignocellulosic substrates and enzymatic saccharification of pretreated sugarcane bagasse. Ind Crop Prod 122:66–75Google Scholar
  231. Martin-Sampedro R, Miranda J, Villar JC, Eugenio ME (2013) Laccase from Trametes sp. I-62: production, characterization, and application as a new laccase for eucalyptus globulus kraft pulp biobleaching. Ind Eng Chem Res 52:15533–15540Google Scholar
  232. Mayer AM, Staples RC (2002) Laccase: new functions for an old enzyme. Phytochemistry 60:551–565Google Scholar
  233. Mayerhofer MS, Fraser E, Kernaghan G (2015) Acid protease production in fungal root endophytes. Mycologia 107:1–11Google Scholar
  234. Mehdipour-Moghaddam M, Emtiazi G, Bouzari M, Mostajeran A, Salehi Z (2010) Novel phytase and cellulase activities in endophytic Azospirilla. W Appl Sci J 10:1129–1135Google Scholar
  235. Mercado-Blanco J, Alós E, Rey MD, Prieto P (2016) Pseudomonas fluorescens PICF7 displays an endophytic lifestyle in cultivated cereals and enhances yield in barley. FEMS Microbiol 92(8):fiw092. https://doi.org/10.1093/femsec/fiw092 Google Scholar
  236. Mishra A, Gond SK, Kumar A, Sharma VK, Verma SK, Kharwar RN, Sieber TN (2012) Season and tissue type affect fungal endophyte communities of the Indian medicinal plant Tinospora cordifolia more strongly than geographic location. Microbial Ecol 64:388–398Google Scholar
  237. Mitchell DB, Vogel K, Weimann BJ, Pasamontes L, van Loon AP (1997) The phytase subfamily of histidine acid phosphatases: isolation of genes for two novel phytases from the fungi Aspergillus terreus and Myceliophthora thermophila. Microbiology 143:245–252Google Scholar
  238. Mohali S, Burgess T, Wingfield M (2005) Diversity and host association of the tropical tree endophyte Lasiodiplodia theobromae revealed using simple sequence repeat markers. Forest Pathol 35:385–396Google Scholar
  239. Mucciarelli M, Camusso W, Maffei M, Panicco P, Bicchi C (2007) Volatile terpenoids of endophyte-free and infected peppermint (Mentha piperita L.): chemical partitioning of a symbiosis. Microbial Ecol. https://doi.org/10.1007/s00248-007-9227-0
  240. Muthezhilan R, Vinoth S, Gopi K, JaffarHussain A (2014) Dye degrading potential of immobilized laccase from endophytic fungi of coastal sand dune plants. Int J Chem Tech Res 6:4154–4160Google Scholar
  241. Naik BS, Krishnamurthy Y (2010) Endophytes: the real untapped high energy biofuel resource. Curr Sci 98:883Google Scholar
  242. Naik BS, Shashikala J, Krishnamurthy Y (2009) Study on the diversity of endophytic communities from rice (Oryza sativa L.) and their antagonistic activities in vitro. Microbiol Res 164:290–296Google Scholar
  243. Narayan OP, Verma N, Singh AK, Oelmüller R, Kumar M, Prasad D, Kapoor R, Dua M, Johri AK (2017) Antioxidant enzymes in chickpea colonized by Piriformospora indica participate in defense against the pathogen Botrytis cinerea. Scientific Rep 7(1):13553Google Scholar
  244. Nascimento T, Oki Y, Lima D, Almeida-Cortez J, Fernandes GW, Souza-Motta C (2015) Biodiversity of endophytic fungi in different leaf ages of Calotropis procera and their antimicrobial activity. Fungal Ecol 14:79–86Google Scholar
  245. Nassar AH, El-Tarabily KA, Sivasithamparam K (2005) Promotion of plant growth by an auxin-producing isolate of the yeast Williopsis saturnus endophytic in maize (Zea mays L.) roots. Biol Fert Soils 42:97–108Google Scholar
  246. Nayini N (1984) The phytase of yeast. Lebens Wiss Technol 17:24–26Google Scholar
  247. Ngamau C, Matiru V, Tani A, Muthuri C (2014) Potential use of endophytic bacteria as biofertilizer for sustainable banana (Musa spp.) Production. African J Hortic Sci 8(1):1–11Google Scholar
  248. Nicoletti R, Fiorentino A (2015) Plant bioactive metabolites and drugs produced by endophytic fungi of Spermatophyta. Agriculture 5:918–970Google Scholar
  249. Nisbet AJ (2000) Azadirachtin from the neem tree Azadirachta indica: its action against insects. An Soc Entomol Bras 29:615–632Google Scholar
  250. Nuyens F, Verachtert H, Michiels C (2001) Evaluation of a recombinant Saccharomyces cerevisiae strain secreting a Bacillus pumilus endo-beta-xylanase for use in bread-making. In: Meeting of the Benelux Yeast Research Groups, Leuven, BelgiumGoogle Scholar
  251. Nygren CM, Edqvist J, Elfstrand M, Heller G, Taylor AF (2007) Detection of extracellular protease activity in different species and genera of ectomycorrhizal fungi. Mycorrhiza 17:241–248Google Scholar
  252. Ofek-Lalzar M, Gur Y, Ben-Moshe S, Sharon O, Kosman E, Mochli E, Sharon A (2016) Diversity of fungal endophytes in recent and ancient wheat ancestors Triticum dicoccoides and Aegilops sharonensis. FEMS Microbiol Ecol. https://doi.org/10.1093/femsec/fiw152
  253. Ondeyka JG, Helms GL, Hensens OD, Goetz MA, Zink DL, Tsipouras A, Shoop WL, Slayton L, Dombrowski AW, Polishook JD (1997) Nodulisporic acid A, a novel and potent insecticide from a Nodulisporium sp. Isolation, structure determination, and chemical transformations. J Am Chem Soc 119:8809–8816Google Scholar
  254. Onofre SB, Mattiello SP, da Silva GC, Groth D, Malagi I (2013) Production of cellulases by the endophytic fungus Fusarium oxysporum. J Microbiol Res 3:131–134Google Scholar
  255. Orlandelli R, Alberto R, Rubin Filho C, Pamphile J (2012) Diversity of endophytic fungal community associated with Piper hispidum (Piperaceae) leaves. Genet Mol Res 11:1575–1585Google Scholar
  256. Oses R, Valenzuela S, Freer J, Baeza J, Rodríguez J (2006) Evaluation of fungal endophytes for lignocellulolytic enzyme production and wood biodegradation. Int Biodeterior Biodegradation 57:129–135Google Scholar
  257. Pan JJ, Baumgarten AM, May G (2008) Effects of host plant environment and Ustilago maydis infection on the fungal endophyte community of maize (Zea mays). New Phytol 178:147–156Google Scholar
  258. Pancher M, Ceol M, Corneo PE, Longa CMO, Yousaf S, Pertot I, Campisano A (2012) Fungal endophytic communities in grapevines (Vitis vinifera L.) respond to crop management. App Environ Microbiol. https://doi.org/10.1128/AEM.07655-11
  259. Panjiar N, Mishra S, Yadav AN, Verma P (2017) Functional foods from cyanobacteria: an emerging source for functional food products of pharmaceutical importance. In: Gupta VK, Treichel H, Shapaval VO, Oliveira LA, Tuohy MG (eds) Microbial functional foods and nutraceuticals. Wiley, Hoboken, pp 21–37. https://doi.org/10.1002/9781119048961.ch2 Google Scholar
  260. Panuthai T, Sihanonth P, Piapukiew J, Sooksai S, Sangvanich P, Karnchanatat A (2012) An extracellular lipase from the endophytic fungi Fusarium oxysporum isolated from the Thai medicinal plant, Croton oblongifolius Roxb. Afr J Microbiol Res 6:2622–2638Google Scholar
  261. Parsa S, García-Lemos AM, Castillo K, Ortiz V, López-Lavalle LAB, Braun J, Vega FE (2016) Fungal endophytes in germinated seeds of the common bean, Phaseolus vulgaris. Fungal Biol 120:783–790Google Scholar
  262. Patil MG, Pagare J, Patil SN, Sidhu AK (2015) Extracellular enzymatic activities of endophytic fungi isolated from various medicinal plants. Int J Curr Microbiol App Sci 4:1035–1042Google Scholar
  263. Peng X-W, Chen H-Z (2007) Microbial oil accumulation and cellulase secretion of the endophytic fungi from oleaginous plants. Ann Microbiol. https://doi.org/10.1007/BF03175213
  264. Petrini O (1991) Fungal endophytes of tree leaves. In: Andrews JH, Hirano SS (eds) Microbial ecology of leaves. Brock/Springer series in contemporary bioscience. Springer, New York. https://doi.org/10.1007/978-1-4612-3168-4_9 Google Scholar
  265. Petrović S, Škrinjar M, Bećarević A, Vujičić I, Banka L (1990) Effect of various carbon sources on microbial lipases biosynthesis. Biotechnol Lett 12:299–304Google Scholar
  266. Phongpaichit S, Rungjindamai N, Rukachaisirikul V, Sakayaroj J (2006) Antimicrobial activity in cultures of endophytic fungi isolated from Garcinia species. FEMS Immunol Med Microbiol 48:367–372Google Scholar
  267. Pierre E, Louise NW, Marie TKR, Valere T, Arc-en-ce J, Fekam B (2016) Integrated assessment of phytostimulation and biocontrol potential of endophytic Trichoderma spp against common bean (Phaseolus vulgaris L.) root rot fungi complex in centre region, Cameroon. Int J Pure App Biosci 4:50–68Google Scholar
  268. Pieterse Z, Aveling TA, Jacobs A, Cowan DA (2018) Seasonal variability in fungal endophytes from Aizoaceae plants in the Succulent Karoo biodiversity hotspot, South Africa. J Arid Environ. https://doi.org/10.1016/j.jaridenv.2018.05.004
  269. Pimentel MR, Molina G, Dionísio AP, Maróstica Junior MR, Pastore GM (2011) The use of endophytes to obtain bioactive compounds and their application in biotransformation process. Biotechnol Res Int. https://doi.org/10.4061/2011/576286
  270. Pinto LSRC, Azevedo JL, Pereira JO, Vieira MLC, Labate CA (2000) Symptomless infection of banana and maize by endophytic fungi impairs photosynthetic efficiency. New Phytol 147:609–615Google Scholar
  271. Polizeli M, Rizzatti A, Monti R, Terenzi H, Jorge JA, Amorim D (2005) Xylanases from fungi: properties and industrial applications. App Microbiol Biotechnol 67:577–591Google Scholar
  272. Potshangbam M, Devi SI, Sahoo D, Strobel GA (2017) Functional characterization of endophytic fungal community associated with Oryza sativa L. and Zea mays L. Front Microbiol. https://doi.org/10.3389/fmicb.2017.00325
  273. Prade RA (1996) Xylanases: from biology to biotechnology. Biotechnol Genet Eng Rev 13:101–132Google Scholar
  274. Prakash G, Bhojwani SS, Srivastava AK (2002) Production of azadirachtin from plant tissue culture: state of the art and future prospects. Biotechnol Bioprocess Eng 7:185–193Google Scholar
  275. Premjanu N, Jayanthy C (2012) Endophytic fungi a repository of bioactive compounds – a review. Intl J Inst Phar Life Sci 2:135–162Google Scholar
  276. Puri SC, Verma V, Amna T, Qazi GN, Spiteller M (2005) An Endophytic Fungus from Nothapodytes foetida that Produces Camptothecin. J Nat Prod 68:1717–1719Google Scholar
  277. Qadri M, Rajput R, Abdin MZ, Vishwakarma RA, Riyaz-Ul-Hassan S (2014) Diversity, molecular phylogeny, and bioactive potential of fungal endophytes associated with the Himalayan blue pine (Pinus wallichiana). Microbial Ecol 67:877–887Google Scholar
  278. Qi F, Jing T, Zhan Y (2012) Characterization of endophytic fungi from Acer ginnala Maxim. in an artificial plantation: media effect and tissue-dependent variation. PLoS One 7:e46785Google Scholar
  279. Rabha AJ, Naglot A, Sharma GD, Gogoi HK, Veer V (2014) In vitro evaluation of antagonism of endophytic Colletotrichum gloeosporioides against potent fungal pathogens of Camellia sinensis. Indian J Microbiol 54:302–309Google Scholar
  280. Rabie GH (2005) Role of arbuscular mycorrhizal fungi in phytoremediation of soil rhizosphere spiked with poly aromatic hydrocarbons. Mycobiology 33:41–50Google Scholar
  281. Rademacher W (1994) Gibberellin formation in microorganisms. Plant Growth Regul 15:303–314Google Scholar
  282. Rafiq M, Dahot MU (2010) Callus and azadirachtin related limonoids production through in vitro culture of neem (Azadirachta indica A. Juss). Afr J Biotechnol 9(4):449–453Google Scholar
  283. Ramawat K, Dass S, Mathur M (2009) The chemical diversity of bioactive molecules and therapeutic potential of medicinal plants. In: Ramawat K (ed) Herbal drugs: ethnomedicine to modern medicine. Springer, Berlin/Heidelberg. https://doi.org/10.1007/978-3-540-79116-4_2 Google Scholar
  284. Ramírez MC, Rivera-Ríos J, Téllez-Jurado A, Gálvez AM, Mercado-Flores Y, Arana-Cuenca A (2012) Screening for thermotolerant ligninolytic fungi with laccase, lipase, and protease activity isolated in Mexico. J Environ Manage 95:S256–S259Google Scholar
  285. Rana KL, Kour D, Yadav AN, Kumar V, Dhaliwal HS (2016a) Biotechnological applications of endophytic microbes associated with barley (Hordeum vulgare L.) growing in Indian Himalayan regions. In: Proceeding of 86th annual session of NASI & symposium on “science, technology and entrepreneurship for human welfare in the Himalayan Region”, p 80Google Scholar
  286. Rana KL, Kour D, Yadav AN, Kumar V, Dhaliwal HS (2016b) Endophytic microbes from wheat: diversity and biotechnological applications for sustainable agriculture. In: Proceeding of 57th association of microbiologist of India & International symposium on “Microbes and biosphere: what’s new what’s next”. p 453Google Scholar
  287. Rana KL, Kour D, Verma P, Yadav AN, Kumar V, Singh DH (2017) Diversity and biotechnological applications of endophytic microbes associated with maize (Zea mays L.) growing in Indian Himalayan regions. In: Proceeding of national conference on advances in food science and technology, pp 41Google Scholar
  288. Ratnaweera PB, Williams DE, de Silva ED, Wijesundera RL, Dalisay DS, Andersen RJ (2014) Helvolic acid, an antibacterial nortriterpenoid from a fungal endophyte, Xylaria sp. of orchid Anoectochilus setaceus endemic to Sri Lanka. Mycology 5:23–28Google Scholar
  289. Ratnaweera PB, de Silva ED, Williams DE, Andersen RJ (2015a) Antimicrobial activities of endophytic fungi obtained from the arid zone invasive plant Opuntia dillenii and the isolation of equisetin, from endophytic Fusarium sp. BMC Complem Altern Med. https://doi.org/10.1186/s12906-015-0722-4
  290. Ratnaweera PB, Williams DE, Patrick BO, de Silva ED, Andersen RJ (2015b) Solanioic acid, an antibacterial degraded steroid produced in culture by the fungus Rhizoctonia solani isolated from tubers of the medicinal plant Cyperus rotundus. Org Lett 17:2074–2077Google Scholar
  291. Ratnaweera P, de Silva ED, Wijesundera RL, Andersen RJ (2016) Antimicrobial constituents of Hypocrea virens, an endophyte of the mangrove-associate plant Premna serratifolia L. J Natl Sci Found Sri Lanka 44(1):43–51Google Scholar
  292. Ray A (2012) Application of lipase in industry. Asian J Pharm Technol 2(2):33–37Google Scholar
  293. Reddy NR, Pierson MD, Sathe SK, Salunkhe DK (1989) Phytates in cereals and legumes. CRC Press, Boca RatonGoogle Scholar
  294. Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM (2002) Thermotolerance generated by plant/fungal symbiosis. Science 298:1581–1581Google Scholar
  295. Reimerdes EH, Franke K, Sell M (2004) Influencing functional properties of egg yolk by using phospholipases, paper presented at Conf on Food Structure and Food Quality, held on 3–7 October 2004Google Scholar
  296. Renuka S, Ramanujam B (2016) Fungal endophytes from maize (Zea mays L.): isolation, identification and screening against maize stem borer, Chilo partellus (Swinhoe). J Pure Appl Microbiol 10:523–529Google Scholar
  297. Rhoden S, Garcia A, Rubin Filho C, Azevedo J, Pamphile J (2012) Phylogenetic diversity of endophytic leaf fungus isolates from the medicinal tree Trichilia elegans (Meliaceae). Genet Mol Res 11:2513–2522Google Scholar
  298. Rinu K, Sati P, Pandey A (2014) Trichoderma gamsii (NFCCI 2177): a newly isolated endophytic, psychrotolerant, plant growth promoting, and antagonistic fungal strain. J Basic Microbiol 54:408–417Google Scholar
  299. Rivera-Orduña FN, Suarez-Sanchez RA, Flores-Bustamante ZR, Gracida-Rodriguez JN, Flores-Cotera LB (2011) Diversity of endophytic fungi of Taxus globosa (Mexican yew). Fungal Divers 47:65–74Google Scholar
  300. Rodriguez R, White J Jr, Arnold A, Redman RA (2009) Fungal endophytes: diversity and functional roles. New phytol 182:314–330Google Scholar
  301. Rosa LH, Vaz AB, Caligiorne RB, Campolina S, Rosa CA (2009) Endophytic fungi associated with the Antarctic grass Deschampsia antarctica Desv. (Poaceae). Polar Biol 32:161–167Google Scholar
  302. Rosa LH, Almeida Vieira ML, Santiago IF, Rosa CA (2010) Endophytic fungi community associated with the dicotyledonous plant Colobanthus quitensis (Kunth) Bartl. (Caryophyllaceae) in Antarctica. FEMS Microbiol Ecol 73:178–189Google Scholar
  303. Rosa LH, Tabanca N, Techen N, Wedge DE, Pan Z, Bernier UR, Becnel JJ, Agramonte NM, Walker LA, Moraes RM (2012) Diversity and biological activities of endophytic fungi associated with micropropagated medicinal plant Echinacea purpurea (L.) Moench. Am J Plant Sci 3:1105–1114Google Scholar
  304. Rothen C, Miranda V, Aranda-Rickert A, Fracchia S, Rodríguez M (2017) Characterization of dark septate endophyte fungi associated with cultivated soybean at two growth stages. App Soil Ecol 120:62–69Google Scholar
  305. Ruiz-Dueñas FJ, Martínez MJ, Martínez AT (1999) Molecular characterization of a novel peroxidase isolated from the ligninolytic fungus Pleurotus eryngii. Mol Microbiol 31:223–235Google Scholar
  306. Ruma K, Kumar S, Prakash H (2013) Antioxidant, anti-inflammatory, antimicrobial and cytotoxic properties of fungal endophytes from Garcinia species. Int J Pharm Pharm Sci 5:889–897Google Scholar
  307. Ryu DD, Mandels M (1980) Cellulases: biosynthesis and applications. Enzyme Microbial Technol 2:91–102Google Scholar
  308. Sahay H, Yadav AN, Singh AK, Singh S, Kaushik R, Saxena AK (2017) Hot springs of Indian Himalayas: Potential sources of microbial diversity and thermostable hydrolytic enzymes. 3 Biotech 7:1–11Google Scholar
  309. Salem HM, Eweida EA, Farag A (2000) Heavy metals in drinking water and their environmental impact on human health. ICEHM 2000:542–556Google Scholar
  310. Sani A, Nagam V, Netala VR, Tartte V (2017) Characterization of heavy metal resitant endophytic fungi from Boswellia Ovalifoliolata. Imp J Int Res 3(2):1072–1076Google Scholar
  311. Sansinenea E, Ortiz A (2011) Secondary metabolites of soil Bacillus spp. Biotechnol Lett 33:1523–1538Google Scholar
  312. Sara B, Noreddine KC, Jacqueline D (2016) Production of laccase without inducer by Chaetomium species isolated from Chettaba forest situated in the East of Algeria. Afr J Biotechnol 15:207–213Google Scholar
  313. Satdive RK, Fulzele DP, Eapen S (2007) Enhanced production of azadirachtin by hairy root cultures of Azadirachta indica A. Juss by elicitation and media optimization. J Biotechnol 128:281–289Google Scholar
  314. Saunders M, Kohn LM (2008) Host-synthesized secondary compounds influence the in vitro interactions between fungal endophytes of maize. Appl Environ Microbiol 74:136–142Google Scholar
  315. Savitha J, Srividya S, Jagat R, Payal P, Priyanki S, Rashmi G, Roshini K, Shantala Y (2007) Identification of potential fungal strain (s) for the production of inducible, extracellular and alkalophilic lipase. Afr J Biotechnol 6(5):564–568Google Scholar
  316. Saxena AK, Yadav AN, Kaushik R, Tyagi SP, Shukla L (2015a) Biotechnological applications of microbes isolated from cold environments in agriculture and allied sectors. In: International conference on “low temperature science and biotechnological advances”, society of low temperature biology. p 104. https://doi.org/10.13140/RG.2.1.2853.5202
  317. Saxena S, Meshram V, Kapoor N (2015b) Muscodor tigerii sp. nov.-Volatile antibiotic producing endophytic fungus from the Northeastern Himalayas. Ann Microbiol 65:47–57Google Scholar
  318. Saxena AK, Yadav AN, Rajawat M, Kaushik R, Kumar R, Kumar M, Prasanna R, Shukla L (2016) Microbial diversity of extreme regions: an unseen heritage and wealth. Indian J Plant Genet Resour 29:246–248Google Scholar
  319. Schaechter M (2012) Eukaryotic Microbes. Elsevier, San DiegoGoogle Scholar
  320. Schulz B, Boyle C, Draeger S, Römmert A-K, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106:996–1004Google Scholar
  321. Schwarze FW, Engels J, Mattheck C (2000) Fundamental aspects. In: Fungal strategies of wood decay in trees. Springer, Heidelberg, pp 5–31Google Scholar
  322. Selim KA, Nagia MM, Ghwas DEE (2017) Endophytic fungi are multifunctional biosynthesizers: ecological role and chemical diversity. In: Endophytic fungi: diversity, characterization and Biocontrol, nova publishers, New York, pp 39–92Google Scholar
  323. Selvanathan S, Indrakumar I, Johnpaul M (2011) Biodiversity of the endophytic fungi isolated from Calotropis gigantea (L.) R. Br. Recent Res Sci Technol 3(4):94–100Google Scholar
  324. Sharma D, Pramanik A, Agrawal PK (2016) Evaluation of bioactive secondary metabolites from endophytic fungus Pestalotiopsis neglectaBAB-5510 isolated from leaves of Cupressus torulosa D. Don. 3 Biotech. https://doi.org/10.1007/s13205-016-0518-3
  325. Shi Y, Dai C, Wu Y, Yuan Z (2004) Study on the degradation of wheat straw by endophytic fungi. ACTA Scientiae Circumstantiae 1:27Google Scholar
  326. Shweta S, Zuehlke S, Ramesha B, Priti V, Kumar PM, Ravikanth G, Spiteller M, Vasudeva R, Shaanker RU (2010) Endophytic fungal strains of Fusarium solani, from Apodytes dimidiata E. Mey. ex Arn (Icacinaceae) produce camptothecin, 10-hydroxycamptothecin and 9-methoxycamptothecin. Phytochemistry 71:117–122Google Scholar
  327. Sieber T, Riesen T, Müller E, Fried P (1988) Endophytic fungi in four winter wheat cultivars (Triticum aestivum L.) differing in resistance against Stagonospora nodorum (Berk.) Cast. & Germ.= Septoria nodorum (Berk.) Berk. J Phytopathol 122:289–306Google Scholar
  328. Silva GH, de Oliveira CM, Teles HL, Pauletti PM, Castro-Gamboa I, Silva DH, Bolzani VS, Young MC, Costa-Neto CM, Pfenning LH (2010) Sesquiterpenes from Xylaria sp., an endophytic fungus associated with Piper aduncum (Piperaceae). Phytochem Lett 3:164–167Google Scholar
  329. Singh H (2006) Mycoremediation: fungal bioremediation. Wiley, HobokenGoogle Scholar
  330. Singh SP, Gaur R (2017) Endophytic Streptomyces spp. underscore induction of defense regulatory genes and confers resistance against Sclerotium rolfsii in chickpea. Biol Control 104:44–56Google Scholar
  331. Singh AK, Mukhopadhyay M (2012) Overview of fungal lipase: a review. Appl Biochem Biotechnol 166:486–520Google Scholar
  332. Singh RN, Gaba S, Yadav AN, Gaur P, Gulati S, Kaushik R, Saxena AK (2016) First, high quality draft genome sequence of a plant growth promoting and Cold Active Enzymes producing psychrotrophic Arthrobacter agilis strain L77. Stand Genomic Sci 11:54. https://doi.org/10.1186/s40793-016-0176-4 Google Scholar
  333. Soleimani M, Hajabbasi MA, Afyuni M, Mirlohi A, Borggaard OK, Holm PE (2010) Effect of endophytic fungi on cadmium tolerance and bioaccumulation by Festuca arundinacea and Festuca pratensis. Int J Phytoremediat 12:535–549Google Scholar
  334. Sommart U, Rukachaisirikul V, Tadpetch K, Sukpondma Y, Phongpaichit S, Hutadilok-Towatana N, Sakayaroj J (2012) Modiolin and phthalide derivatives from the endophytic fungus Microsphaeropsis arundinis PSU-G18. Tetrahedron 68:10005–10010Google Scholar
  335. Sorgatto M, Guimarães N, Zanoelo F, Marques M, Peixoto-Nogueira S, Giannesi G (2012) Purification and characterization of an extracellular xylanase produced by the endophytic fungus, Aspergillus terreus, grown in submerged fermentation. Afr J Biotechnol 11:8076–8084Google Scholar
  336. Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 3:a001438Google Scholar
  337. Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448Google Scholar
  338. Spagnoletti F, Tobar N, Di Pardo AF, Chiocchio V, Lavado R (2017) Dark septate endophytes present different potential to solubilize calcium, iron and aluminum phosphates. Appl Soil Ecol 111:25–32Google Scholar
  339. Šraj-Kržič N, Pongrac P, Klemenc M, Kladnik A, Regvar M, Gaberščik A (2006) Mycorrhizal colonisation in plants from intermittent aquatic habitats. Aquat Bot 85:331–336Google Scholar
  340. Srivastava P, Andersen PC, Marois JJ, Wright DL, Srivastava M, Harmon PF (2013) Effect of phenolic compounds on growth and ligninolytic enzyme production in Botryosphaeria isolates. Crop Prot 43:146–156Google Scholar
  341. Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260:214–216Google Scholar
  342. Strobel GA (2002) Rainforest endophytes and bioactive products. Crit Rev Biotechnol 22:315–333Google Scholar
  343. Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502Google Scholar
  344. Strobel GA, Pliam NB (1997) Immuno suppressant diterpene compound. Google PatentsGoogle Scholar
  345. Strobel GA, Torczynski R, Bollon A (1997) Acremonium sp. – a leucinostatin A producing endophyte of European yew (Taxus baccata). Plant Sci 128:97–108Google Scholar
  346. Strobel GA, Miller RV, Martinez-Miller C, Condron MM, Teplow DB, Hess W (1999) Cryptocandin, a potent antimycotic from the endophytic fungus Cryptosporiopsis cf. quercina. Microbiology 145:1919–1926Google Scholar
  347. Strobel G, Ford E, Worapong J, Harper JK, Arif AM, Grant DM, Fung PC, Chau RMW (2002) Isopestacin, an isobenzofuranone from Pestalotiopsis microspora, possessing antifungal and antioxidant activities. Phytochemistry 60:179–183Google Scholar
  348. Sturz A, Christie B, Matheson B, Nowak J (1997) Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliage and their influence on host growth. Biol Fert Soils 25:13–19Google Scholar
  349. Su H, Kang J, Cao J, Mo L, Hyde KD (2014) Medicinal plant endophytes produce analogous bioactive compounds. Chiang Mai J Sc 41:1–13Google Scholar
  350. Sudhakar T, Dash S, Rao R, Srinivasan R, Zacharia S, Atmanand M, Subramaniam B, Nayak S (2013) Do endophytic fungi possess pathway genes for plant secondary metabolites? Curr Sci 104(2):178Google Scholar
  351. Suffness M (1995) Taxol: science and applications, vol 22. CRC Press, Boca RatonGoogle Scholar
  352. Sukumaran RK, Singhania RR, Pandey A (2005) Microbial cellulases-production, applications and challenges. J Sci Ind Res 64(11):832–844Google Scholar
  353. Suman A, Verma P, Yadav AN, Saxena AK (2015) Bioprospecting for extracellular hydrolytic enzymes from culturable thermotolerant bacteria isolated from Manikaran thermal springs. Res J Biotechnol 10:33–42Google Scholar
  354. Suman A, Yadav AN, Verma P (2016) Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Singh D, Abhilash P, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity, research perspectives. Springer, New Delhi, pp 117–143. https://doi.org/10.1007/978-81-322-2647-5_7 Google Scholar
  355. Sun X, Guo LD, Hyde K (2011a) Community composition of endophytic fungi in Acer truncatum and their role in decomposition. Fungal Divers 47:85–95Google Scholar
  356. Sun Y, Luo H, Li Y, Sun C, Song J, Niu Y, Zhu Y, Dong L, Lv A, Tramontano E (2011b) Pyrosequencing of the Camptotheca acuminata transcriptome reveals putative genes involved in camptothecin biosynthesis and transport. BMC Genomics. https://doi.org/10.1186/1471-2164-12-533
  357. Sun J-F, Lin X, Zhou X-F, Wan J, Zhang T, Yang B, Yang X-W, Tu Z, Liu Y (2014) Pestalols A–E, new alkenyl phenol and benzaldehyde derivatives from endophytic fungus Pestalotiopsis sp. AcBC2 isolated from the Chinese mangrove plant Aegiceras corniculatum. J Antibiot 67:451–457Google Scholar
  358. Sunitha V, Devi DN, Srinivas C (2013) Extracellular enzymatic activity of endophytic fungal strains isolated from medicinal plants. World J Agri Sci 9:01–09Google Scholar
  359. Suryanarayanan T, Senthilarasu G, Muruganandam V (2000) Endophytic fungi from Cuscuta reflexa and its host plants. Fungal Divers 4:117–123Google Scholar
  360. Suryanarayanan TS, Wittlinger SK, Faeth SH (2005) Endophytic fungi associated with cacti in Arizona. Mycol Res 109:635–639Google Scholar
  361. Suto M, Takebayashi M, Saito K, Tanaka M, Yokota A, Tomita F (2002) Endophytes as producers of xylanase. J Biosci Bioeng 93:88–90Google Scholar
  362. Syed S, Riyaz-Ul-Hassan S, Johri S (2013) A novel cellulase from an endophyte, Penicillium sp. NFCCI 2862. Am J Microbiol Res 1:84–91Google Scholar
  363. Sztajer H, Maliszewska I (1989) The effect of culture conditions on lipolytic productivity of Penicillium citrinum. Biotechnol Lett 11:895–898Google Scholar
  364. Taghavi S, Garafola C, Monchy S, Newman L, Hoffman A, Weyens N, Barac T, Vangronsveld J, van der Lelie D (2009) Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl Environ Microbiol 75:748–757Google Scholar
  365. Tamehiro N, Okamoto-Hosoya Y, Okamoto S, Ubukata M, Hamada M, Naganawa H, Ochi K (2002) Bacilysocin, a novel phospholipid antibiotic produced by Bacillus subtilis 168. Antimicrob Agents Chemother 46:315–320Google Scholar
  366. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. https://doi.org/10.1093/molbev/msr121 Google Scholar
  367. Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459Google Scholar
  368. Tasia W, Melliawati R (2017) Cellulase and xylanase production from three isolates of indigenous endophytic fungi. IOP Conf. Ser.: Earth Environ Sci 101:012035​Google Scholar
  369. Tejesvi MV, Kajula M, Mattila S, Pirttilä AM (2011) Bioactivity and genetic diversity of endophytic fungi in Rhododendron tomentosum Harmaja. Fungal Divers 47:97–107Google Scholar
  370. Tekere M, Mswaka A, Zvauya R, Read J (2001) Growth, dye degradation and ligninolytic activity studies on Zimbabwean white rot fungi. Enzyme Microbial Technol 28:420–426Google Scholar
  371. Tenguria RK, Firodiya A (2013) Diversity of endophytic fungi in leaves of Glycine max (L.) merr. from central region of Madhya Pradesh. World J Pharm Pharm Sci 2:5928–5934Google Scholar
  372. Tenguria RK, Khan FN, Quereshi S (2011) Endophytes-mines of pharmacological therapeutics. World J Sci Technol 1:127–149Google Scholar
  373. Thomas L, Joseph A, Singhania RR, Patel A, Pandey A (2017) Industrial enzymes: xylanases. In: Current developments in biotechnology and bioengineering. Elsevier, Amsterdam/Boston, pp 127–148Google Scholar
  374. Thongsandee W, Matsuda Y, Ito S (2012) Temporal variations in endophytic fungal assemblages of Ginkgo biloba L. J Forest Res 17:213–218Google Scholar
  375. Tian X, Cao L, Tan H, Zeng Q, Jia Y, Han W, Zhou S (2004) Study on the communities of endophytic fungi and endophytic actinomycetes from rice and their antipathogenic activities in vitro. World J Microbiol Biotechnol 20:303–309Google Scholar
  376. Tian X, Yao Y, Chen G, Mao Z, Wang X, Xie B (2014) Suppression of Meloidogyne incognita by the endophytic fungus Acremonium implicatum from tomato root galls. Int J Pest Manage 60:239–245Google Scholar
  377. Tian J, Fu L, Zhang Z, Dong X, Xu D, Mao Z, Liu Y, Lai D, Zhou L (2017) Dibenzo-α-pyrones from the endophytic fungus Alternaria sp. Samif01: isolation, structure elucidation, and their antibacterial and antioxidant activities. Nat Prod Res 31:387–396Google Scholar
  378. Tien M (1987) Properties of ligninase from Phanerochaete chrysosporium and their possible applications. Crit Rev Microbiol 15:141–168Google Scholar
  379. Toghueo R, Ejiya E, Sahal D, Yazdani S, Boyom F (2017) Production of cellulolytic enzymes by endophytic fungi isolated from Cameroonian medicinal plants. Int J Curr Microbiol App Sci 6:1264–1271Google Scholar
  380. Tomita F (2003) Endophytes in Southeast Asia and Japan: their taxonomic diversity and potential applications. Fungal Divers 14:187–204Google Scholar
  381. Torres M, Dolcet MM, Sala N, Canela R (2003) Endophytic fungi associated with Mediterranean plants as a source of mycelium-bound lipases. J Agri Food Chem 51:3328–3333Google Scholar
  382. Traving SJ, Thygesen UH, Riemann L, Stedmon CA (2015) A model of extracellular enzymes in free-living microbes: which strategy pays off? Appl Environ Microbiol 81:7385–7393Google Scholar
  383. Tsujisaka Y, Iwai M, Tominaga Y (1973) Purification, crystallization and some properties of lipase from Geotrichum candidum Link. Agric Biol Chem 37:1457–1464Google Scholar
  384. Uhlig H (1998) Industrial enzymes and their applications. Wiley, New YorkGoogle Scholar
  385. Undurraga D, Markovits A, Erazo S (2001) Cocoa butter equivalent through enzymic interesterification of palm oil midfraction. Process Biochem 36:933–939Google Scholar
  386. Urairuj C, Khanongnuch C, Lumyong S (2003) Ligninolytic enzymes from tropical endophytic Xylariaceae. Fungal Divers 13:209–219Google Scholar
  387. Uzma F, Konappa NM, Chowdappa S (2016) Diversity and extracellular enzyme activities of fungal endophytes isolated from medicinal plants of Western Ghats, Karnataka. Egyptian J Basic Appl Sci 3:335–342Google Scholar
  388. Van Dyk J, Pletschke B (2012) A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes—factors affecting enzymes, conversion and synergy. Biotechnol Adv 30:1458–1480Google Scholar
  389. Vandenbussche F, Fierro AC, Wiedemann G, Reski R, Van Der Straeten D (2007) Evolutionary conservation of plant gibberellin signalling pathway components. BMC Plant Biol. https://doi.org/10.1186/1471-2229-7-65
  390. Vasundhara M, Kumar A, Reddy MS (2016) Molecular approaches to screen bioactive compounds from endophytic fungi. Front Microbiol. https://doi.org/10.3389/fmicb.2016.01774
  391. Veitch GE, Beckmann E, Burke BJ, Boyer A, Ayats C, Ley SV (2007a) A relay route for the synthesis of azadirachtin. Angew Chem Int Ed 46:7633–7635Google Scholar
  392. Veitch GE, Beckmann E, Burke BJ, Boyer A, Maslen SL, Ley SV (2007b) Synthesis of azadirachtin: a long but successful journey. Angew Chem Int Ed 46:7629–7632Google Scholar
  393. Veitch GE, Beckmann E, Burke BJ, Boyer A, Maslen SL, Ley SV (2007c) Titelbild: synthesis of Azadirachtin: a long but successful journey (Angew. Chem. 40/2007). Angew Chemi 119:7663–7663Google Scholar
  394. Venkatesagowda B, Ponugupaty E, Barbosa AM, Dekker RF (2012) Diversity of plant oil seed-associated fungi isolated from seven oil-bearing seeds and their potential for the production of lipolytic enzymes. World J Microbiol Biotechnol 28:71–80Google Scholar
  395. Venugopalan A, Srivastava S (2015) Endophytes as in vitro production platforms of high value plant secondary metabolites. Biotechnol Adv 33:873–887Google Scholar
  396. Verma P, Yadav AN, Kazy SK, Saxena AK, Suman A (2013) Elucidating the diversity and plant growth promoting attributes of wheat (Triticum aestivum) associated acidotolerant bacteria from southern hills zone of India. Natl J Life Sci 10:219–227Google Scholar
  397. Verma P, Yadav AN, Kazy SK, Saxena AK, Suman A (2014a) Evaluating the diversity and phylogeny of plant growth promoting bacteria associated with wheat (Triticum aestivum) growing in central zone of India. Int J Curr Microbiol Appl Sci 3:432–447Google Scholar
  398. Verma VC, Prakash S, Singh RG, Gange AC (2014b) Host-mimetic metabolomics of endophytes: looking back into the future. In: Advances in endophytic research. Springer, New Delhi, pp 203–218Google Scholar
  399. Verma P, Yadav AN, Khannam KS, Panjiar N, Kumar S, Saxena AK, Suman A (2015a) Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Ann Microbiol 65:1885–1899Google Scholar
  400. Verma P, Yadav AN, Shukla L, Saxena AK, Suman A (2015b) Alleviation of cold stress in wheat seedlings by Bacillus amyloliquefaciens IARI-HHS2-30, an endophytic psychrotolerant K-solubilizing bacterium from NW Indian Himalayas. Natl J Life Sci 12:105–110Google Scholar
  401. Verma P, Yadav AN, Shukla L, Saxena AK, Suman A (2015c) Hydrolytic enzymes production by thermotolerant Bacillus altitudinis IARI-MB-9 and Gulbenkiania mobilis IARI-MB-18 isolated from Manikaran hot springs. Int J Adv Res 3:1241–1250Google Scholar
  402. Verma P, Yadav AN, Khannam KS, Kumar S, Saxena AK, Suman A (2016a) Molecular diversity and multifarious plant growth promoting attributes of Bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India. J Basic Microbiol 56:44–58Google Scholar
  403. Verma P, Yadav AN, Khannam KS, Mishra S, Kumar S, Saxena AK, Suman A (2016b) Appraisal of diversity and functional attributes of thermotolerant wheat associated bacteria from the peninsular zone of India. Saudi J Biol Sci. https://doi.org/10.1016/j.sjbs.2016.01.042
  404. Verma P, Yadav AN, Kumar V, Singh DP, Saxena AK (2017) Beneficial plant-microbes interactions: biodiversity of microbes from diverse extreme environments and its impact for crops improvement. In: Singh DP, Singh HB, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives. Springer Nature, Singapore, pp 543–580. https://doi.org/10.1007/978-981-10-6593-4_22 Google Scholar
  405. Verza M, Arakawa NS, Lopes NP, Kato MJ, Pupo MT, Said S, Carvalho I (2009) Biotransformation of a tetrahydrofuran lignan by the endophytic fungus Phomopsis Sp. J Braz Chem Soc 20:195–200Google Scholar
  406. Vieira ML, Hughes AF, Gil VB, Alves TM, Vaz AB, Zani CL, Rosa CA, Rosa LH (2011) Diversity and antimicrobial activities of the fungal endophyte community associated with the traditional Brazilian medicinal plant Solanum cernuum Vell.(Solanaceae). Can J Microbiol 58:54–66Google Scholar
  407. Wagenaar MM, Corwin J, Strobel G, Clardy J (2000) Three new cytochalasins produced by an endophytic fungus in the genus Rhinocladiella. J Nat Prod 63:1692–1695Google Scholar
  408. Wakelin SA, Warren RA, Harvey PR, Ryder MH (2004) Phosphate solubilization by Penicillium spp. closely associated with wheat roots. Biol Fert Soils 40:36–43Google Scholar
  409. Wall ME, Wani MC, Cook C, Palmer KH, McPhail AT, Sim G (1966) Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminata. J Am Chem Soc 88:3888–3890Google Scholar
  410. Wang Y, Dai C-C (2011) Endophytes: a potential resource for biosynthesis, biotransformation, and biodegradation. Ann Microbiol 61:207–215Google Scholar
  411. Wang J, Wu J, Huang W, Tan R (2006a) Laccase production by Monotospora sp., an endophytic fungus in Cynodon dactylon. Bioresour Technol 97:786–789Google Scholar
  412. Wang S, Li X-M, Teuscher F, Li D-L, Diesel A, Ebel R, Proksch P, Wang B-G (2006b) Chaetopyranin, a benzaldehyde derivative, and other related metabolites from Chaetomium globosum, an endophytic fungus derived from the marine red alga Polysiphonia urceolata. J Nat Prod 69:1622–1625Google Scholar
  413. Wang Y, Niu S, Liu S, Guo L, Che Y (2010a) The first naturally occurring thiepinols and thienol from an endolichenic fungus Coniochaeta sp. Org Lett 12:5081–5083Google Scholar
  414. Wang Y, Zheng Z, Liu S, Zhang H, Li E, Guo L, Che Y (2010b) Oxepinochromenones, furochromenone, and their putative precursors from the endolichenic fungus Coniochaeta sp. J Nat Prod 73:920–924Google Scholar
  415. Wang L-W, Xu BG, Wang J-Y, Su Z-Z, Lin F-C, Zhang C-L, Kubicek CP (2012) Bioactive metabolites from Phoma species, an endophytic fungus from the Chinese medicinal plant Arisaema erubescens. Appl Microbiol Biotechnol 93:1231–1239Google Scholar
  416. Wang Q-X, Bao L, Yang X-L, Liu D-L, Guo H, Dai H-Q, Song F-H, Zhang L-X, Guo L-D, Li S-J (2013) Ophiobolins P–T, five new cytotoxic and antibacterial sesterterpenes from the endolichenic fungus Ulocladium sp. Fitoterapia 90:220–227Google Scholar
  417. Wang W, Zhai Y, Cao L, Tan H, Zhang R (2016) Endophytic bacterial and fungal microbiota in sprouts, roots and stems of rice (Oryza sativa L.). Microbiol Res 188:1–8Google Scholar
  418. Waqas M, Khan AL, Kamran M, Hamayun M, Kang S-M, Kim Y-H, Lee I-J (2012) Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules 17:10754–10773Google Scholar
  419. Weber D, Sterner O, Anke T, Gorzalczancy S, Martino V, Acevedo C (2004) Phomol, a new antiinflammatory metabolite from an endophyte of the medicinal plant Erythrina crista-galli. J Antibiot 57:559–563Google Scholar
  420. Will M, Sylvia D (1990) Interaction of rhizosphere bacteria, fertilizer, and vesicular-arbuscular mycorrhizal fungi with sea oats. Appl Environ Microbiol 56:2073–2079Google Scholar
  421. Wipusaree N, Sihanonth P, Piapukiew J, Sangvanich P, Karnchanatat A (2011) Purification and characterization of a xylanase from the endophytic fungus Alternaria alternata isolated from the Thai medicinal plant, Croton oblongifolius Roxb. African J Microbiol Res 5:5697–5712Google Scholar
  422. Wong DW (2009) Structure and action mechanism of ligninolytic enzymes. Appl Biochem Biotechnol 157:174–209Google Scholar
  423. Wu SH, Chen YW, Shao SC, Wang LD, Yu Y, Li ZY, Yang LY, Li SL, Huang R (2009) Two new solanapyrone analogues from the endophytic fungus Nigrospora sp. YB-141 of Azadirachta indica. Chem Biodivers 6:79–85Google Scholar
  424. Wu H, Yang HY, You XL, Li YH (2013) Diversity of endophytic fungi from roots of Panax ginseng and their saponin yield capacities. SpringerPlus 2:107. https://doi.org/10.1186/2193-1801-2-107 Google Scholar
  425. Xie X-G, Dai C-C (2015) Biodegradation of a model allelochemical cinnamic acid by a novel endophytic fungus Phomopsis liquidambari. Int Biodeterior Biodegradation 104:498–507Google Scholar
  426. Xing Y-M, Chen J, Cui J-L, Chen X-M, Guo S-X (2011) Antimicrobial activity and biodiversity of endophytic fungi in Dendrobium devonianum and Dendrobium thyrsiflorum from Vietnam. Curr Microbiol 62:1218–1224Google Scholar
  427. Xing HQ, Ma JC, Xu BL, Zhang SW, Wang J, Cao L, Yang XM (2018) Mycobiota of maize seeds revealed by rDNA-ITS sequence analysis of samples with varying storage times. Microbiology Open 7(6):e00609Google Scholar
  428. Xiong Z-Q, Yang Y-Y, Zhao N, Wang Y (2013) Diversity of endophytic fungi and screening of fungal paclitaxel producer from Anglojap yew, Taxus x media. BMC Microbiol. https://doi.org/10.1186/1471-2180-13-71
  429. Xu QY, Huang YJ, Zheng ZH, Song SY (2005) Purification, elucidation and activities study of cytosporone. B J Xiamen Univ Nat Sci 44:425–428Google Scholar
  430. Xu YM, Espinosa-Artiles P, Liu MX, Arnold AE, Gunatilaka AL (2013) Secoemestrin D, a Cytotoxic Epitetrathiodioxopiperizine, and Emericellenes A–E, Five Sesterterpenoids from Emericella sp. AST0036, a Fungal Endophyte of Astragalus lentiginosus 1. J Nat Prod 76:2330–2336Google Scholar
  431. Yadav AN (2015) Bacterial diversity of cold deserts and mining of genes for low temperature tolerance. Ph.D. Thesis, IARI, New Delhi/BIT, Ranchi. p 234. https://doi.org/10.13140/RG.2.1.2948.1283/2
  432. Yadav AN (2019) Endophytic fungi for plant growth promotion and adaptation under abiotic stress conditions. Acta Sci Agric 3:91–93Google Scholar
  433. Yadav AN, Verma P, Sachan S, Kaushik R, Saxena A (2012) Diversity of culturable psychrotrophic bacteria from Leh Ladakh and bioprospecting for cold-active extracellular enzymes. In: Proceeding of national seminar on “biotechnological interventions for the benefit of mankind”, New Delhi, p 32Google Scholar
  434. Yadav N, Yadav AN (2018) Biodiversity and biotechnological applications of novel plant growth promoting methylotrophs. J Appl Biotechnol Bioeng 5:342–344Google Scholar
  435. Yadav R, Singh AV, Joshi S, Kumar M (2015) Antifungal and enzyme activity of endophytic fungi isolated from Ocimum sanctum and Aloe vera. Afr J Microbiol Res 9:1783–1788Google Scholar
  436. Yadav AN, Sachan SG, Verma P, Saxena AK (2015a) Prospecting cold deserts of north western Himalayas for microbial diversity and plant growth promoting attributes. J Biosci Bioeng 119:683–693Google Scholar
  437. Yadav AN, Sachan SG, Verma P, Tyagi SP, Kaushik R, Saxena AK (2015b) Culturable diversity and functional annotation of psychrotrophic bacteria from cold desert of Leh Ladakh (India). World J Microbiol Biotechnol 31:95–108Google Scholar
  438. Yadav AN, Verma P, Kumar M, Pal KK, Dey R, Gupta A, Padaria JC, Gujar GT, Kumar S, Suman A, Prasanna R, Saxena AK (2015c) Diversity and phylogenetic profiling of niche-specific Bacilli from extreme environments of India. Ann Microbiol 65:611–629Google Scholar
  439. Yadav AN, Sachan SG, Verma P, Kaushik R, Saxena AK (2016) Cold active hydrolytic enzymes production by psychrotrophic Bacilli isolated from three sub-glacial lakes of NW Indian Himalayas. J Basic Microbiol 56:294–307Google Scholar
  440. Yadav AN, Kumar R, Kumar S, Kumar V, Sugitha T, Singh B, Chauhan VS, Dhaliwal HS, Saxena AK (2017a) Beneficial microbiomes: biodiversity and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Biotechnol 5:1–13Google Scholar
  441. Yadav AN, Verma P, Kumar R, Kumar V, Kumar K (2017b) Current applications and future prospects of eco-friendly microbes. EU Voice 3:21–22Google Scholar
  442. Yadav AN, Verma P, Kumar V, Sachan SG, Saxena AK (2017c) Extreme cold environments: a suitable niche for selection of novel psychrotrophic microbes for biotechnological applications. Adv Biotechnol Microbiol 2:1–4Google Scholar
  443. Yadav AN, Verma P, Sachan SG, Saxena AK (2017d) Biodiversity and biotechnological applications of psychrotrophic microbes isolated from Indian Himalayan regions. EC Microbiol ECO. 01:48–54Google Scholar
  444. Yadav AN, Kumar V, Prasad R, Saxena AK, Dhaliwal HS (2018a) Microbiome in crops: diversity, distribution and potential role in crops improvements. In: Prasad R, Gill SS, Tuteja N (eds) Crop improvement through microbial biotechnology. Elsevier, San Diego, pp 305–332Google Scholar
  445. Yadav AN, Verma P, Kumar V, Sangwan P, Mishra S, Panjiar N, Gupta VK, Saxena AK (2018b) Biodiversity of the genus Penicillium in different habitats. In: Gupta VK, Rodriguez-Couto S (eds) New and future developments in microbial biotechnology and bioengineering, Penicillium system properties and applications. Elsevier, Amsterdam, pp 3–18. https://doi.org/10.1016/B978-0-444-63501-3.00001-6 Google Scholar
  446. Yamazaki Y, Sudo H, Yamazaki M, Aimi N, Saito K (2003) Camptothecin biosynthetic genes in hairy roots of Ophiorrhiza pumila: cloning, characterization and differential expression in tissues and by stress compounds. Plant Cell Physiol 44:395–403Google Scholar
  447. Yamazaki Y, Kitajima M, Arita M, Takayama H, Sudo H, Yamazaki M, Aimi N, Saito K (2004) Biosynthesis of camptothecin. In silico and in vivo tracer study from [1-13C] glucose. Plant Physiol 134:161–170Google Scholar
  448. Yang Y, Yan M, Hu B (2014) Endophytic fungal strains of soybean for lipid production. Bioenergy Res 7:353–361Google Scholar
  449. Yang H, Ye W, Ma J, Zeng D, Rong Z, Xu M, Wang Y, Zheng X (2018) Endophytic fungal communities associated with field-grown soybean roots and seeds in the Huang-Huai region of China. Peer J 6:e4713Google Scholar
  450. Yuan ZL, Zhang CL, Lin FC, Kubicek CP (2010) Identity, diversity, and molecular phylogeny of the endophytic mycobiota in the roots of rare wild rice (Oryza granulate) from a nature reserve in Yunnan, China. Appl Environ Microbiol 76:1642–1652Google Scholar
  451. Yuan C, Wang H-Y, Wu C-S, Jiao Y, Li M, Wang Y-Y, Wang S-Q, Zhao Z-T, Lou H-X (2013) Austdiol, fulvic acid and citromycetin derivatives from an endolichenic fungus, Myxotrichum sp. Phytochem Lett 6:662–666Google Scholar
  452. Yuan Y, Feng H, Wang L, Li Z, Shi Y, Zhao L, Feng Z, Zhu H (2017) Potential of endophytic fungi isolated from cotton roots for biological control against Verticillium Wilt disease. PloS One 12:e0170557Google Scholar
  453. Zaferanloo B, Pepper SA, Coulthard SA, Redfern CP, Palombo EA (2018) Metabolites of endophytic fungi from Australian native plants as potential anticancer agents. FEMS Microbiol Lett. https://doi.org/10.1093/femsle/fny078
  454. Zhang SS-QOM, Qi-Yong Z-DT (2007) Isolation and characterization of endophytic microorganisms in glycyrrhiza inflata Bat. from Xinjiang [J]. Microbiology 5:14Google Scholar
  455. Zhang L, Guo B, Li H, Zeng S, Shao H, Gu S, Wei R (2000) Preliminary study on the isolation of endophytic fungus of Catharanthus roseus and its fermentation to produce products of therapeutic value. Chin Trad Herb Drugs 31:805–807Google Scholar
  456. Zhang Y, Wang S, Li X-M, Cui C-M, Feng C, Wang B-G (2007) New sphingolipids with a previously unreported 9-methyl-C20-sphingosine moiety from a marine algous endophytic fungus Aspergillus niger EN-13. Lipids 42:759–764Google Scholar
  457. Zhang HW, Huang WY, Chen JR, Yan WZ, Xie DQ, Tan RX (2008) Cephalosol: an antimicrobial metabolite with an unprecedented skeleton from endophytic Cephalosporium acremonium IFB-E007. Chem Eur J 14:10670–10674Google Scholar
  458. Zhang F, Liu S, Lu X, Guo L, Zhang H, Che Y (2009a) Allenyl and alkynyl phenyl ethers from the endolichenic fungus Neurospora terricola. J Nat Prod 72:1782–1785Google Scholar
  459. Zhang P, Zhou PP, Yu LJ (2009b) An endophytic taxol-producing fungus from Taxus x media, Aspergillus candidus MD3. FEMS Microbiol Lett 293:155–159Google Scholar
  460. Zhang F, Li L, Niu S, Si Y, Guo L, Jiang X, Che Y (2012) A thiopyranchromenone and other chromone derivatives from an endolichenic fungus, Preussia africana. J Nat Prod 75:230–237Google Scholar
  461. Zhang W, Xu L, Yang L, Huang Y, Li S, Shen Y (2014) Phomopsidone A, a novel depsidone metabolite from the mangrove endophytic fungus Phomopsis sp. A123. Fitoterapia 96:146–151Google Scholar
  462. Zhao J, Mou Y, Shan T, Li Y, Zhou L, Wang M, Wang J (2010) Antimicrobial metabolites from the endophytic fungus Pichia guilliermondii isolated from Paris polyphylla var. yunnanensis. Molecules 15:7961–7970Google Scholar
  463. Zhao J, Fu Y, Luo M, Zu Y, Wang W, Zhao C, Gu C (2012) Endophytic fungi from pigeon pea [Cajanus cajan (L.) Millsp.] produce antioxidant cajaninstilbene acid. J Agric Food Chem 60:4314–4319Google Scholar
  464. Zhao J, Li C, Wang W, Zhao C, Luo M, Mu F, Fu Y, Zu Y, Yao M (2013) Hypocrea lixii, novel endophytic fungi producing anticancer agent cajanol, isolated from pigeon pea (C ajanuscajan [L.] Millsp.). J Appl Microbiol 115:102–113Google Scholar
  465. Zhao J, Ma D, Luo M, Wang W, Zhao C, Zu Y, Fu Y, Wink M (2014) In vitro antioxidant activities and antioxidant enzyme activities in HepG2 cells and main active compounds of endophytic fungus from pigeon pea [Cajanus cajan (L.) Millsp.]. Food Res Int 56:243–251Google Scholar
  466. Zhao L, Xu Y, Lai X (2018) Antagonistic endophytic bacteria associated with nodules of soybean (Glycine max L.) and plant growth-promoting properties. Braz J Microbiol 49:269–278Google Scholar
  467. Zheng C-J, Li L, Zou J-P, Han T, Qin L-P (2012) Identification of a quinazoline alkaloid produced by Penicillium vinaceum, an endophytic fungus from Crocus sativus. Pharm Biol 50:129–133Google Scholar
  468. Zheng C-J, Xu L-L, Li Y-Y, Han T, Zhang Q-Y, Ming Q-L, Rahman K, Qin L-P (2013) Cytotoxic metabolites from the cultures of endophytic fungi from Panax ginseng. Appl Microbiol Biotechnol 97:7617–7625Google Scholar
  469. Zhou X, Zhu H, Liu L, Lin J, Tang K (2010) A review: recent advances and future prospects of taxol-producing endophytic fungi. Appl Microbiol Biotechnol 86:1707–1717Google Scholar
  470. Zhou X-M, Zheng C-J, Song X-P, Han C-R, Chen W-H, Chen G-Y (2014) Antibacterial α-pyrone derivatives from a mangrove-derived fungus Stemphylium sp. 33231 from the South China Sea. J Antibiot 67:401–403Google Scholar
  471. Zhou P, Wu Z, Tan D, Yang J, Zhou Q, Zeng F, Zhang M, Bie Q, Chen C, Xue Y (2017) Atrichodermones A–C, three new secondary metabolites from the solid culture of an endophytic fungal strain, Trichoderma atroviride. Fitoterapia 123:18–22Google Scholar
  472. Zikmundova M, Drandarov K, Bigler L, Hesse M, Werner C (2002) Biotransformation of 2-benzoxazolinone and 2-hydroxy-1, 4-benzoxazin-3-one by endophytic fungi isolated from Aphelandra tetragona. Appl Environ Microbiol 68:4863–4870Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kusam Lata Rana
    • 1
  • Divjot Kour
    • 1
  • Imran Sheikh
    • 1
  • Anu Dhiman
    • 2
  • Neelam Yadav
    • 3
  • Ajar Nath Yadav
    • 1
    Email author
  • Ali A. Rastegari
    • 4
  • Karan Singh
    • 5
  • Anil Kumar Saxena
    • 6
  1. 1.Department of BiotechnologyAkal College of Agriculture, Eternal UniversityBaru Sahib, SirmourIndia
  2. 2.Department of MicrobiologyAkal College of Basic Sciences, Eternal UniversityBaru Sahib, SirmourIndia
  3. 3.Gopi Nath P.G. College, Veer Bahadur Singh Purvanchal UniversityDeoli-Salamatpur, GhazipurIndia
  4. 4.Department of Molecular and Cell Biochemistry, Falavarjan BranchIslamic Azad UniversityIsfahanIran
  5. 5.Department of ChemistryAkal College of Basic Sciences, Eternal UniversityBaru Sahib, SirmourIndia
  6. 6.ICAR-National Bureau of Agriculturally Important MicroorganismsKusmaur, MauIndia

Personalised recommendations