Mathematical Problem Solving pp 155-176 | Cite as

# The Impact of Various Methods in Evaluating Metacognitive Strategies in Mathematical Problem Solving

## Abstract

Problem solving has been the theme of mathematics education in Singapore since the 1980s. For the past two decades, the Singapore mathematics curriculum has problem solving as its central focus and aims to prepare students to be competent problem solvers. Problem solving, as articulated by the Singapore Mathematics Curriculum Framework is supported by five inter-related components and Metacognition is one of the components. However, there are very few studies to find out how metacognition has worked through the Singapore classrooms and its impact on problem solving. This paper presents findings from a study on metacognitive strategies Singapore Secondary One (Year 7) students (N = 783) employed while solving mathematics problems. Discussion will center on the different methods used to investigate the nature of metacognition during mathematical problem solving, namely survey inventory, retrospective self-report and qualitative interview. Findings from this study suggest that results from different data collection instruments may lead to dissimilarities in the findings but provide a multi-facet perspective of metacognition in mathematical problem solving. As compared, findings based on data from a single instrument may only provide a skew perspective. Findings from this study bear important implications to the interpretation of research findings as well as the research designs for better insights to metacognition employed during mathematical problem solving.

## References

- Adler, P. A., & Adler, P. (2012). How many qualitative interviews is enough? In S. E. Baker & R. Edwards (Eds.),
*How many qualitative interviews is enough? Expert voices and early career reflections on sampling and cases in qualitative research.*Southampton, GB, National Centre for Research Methods, 43 pp. (National Centre for Research Methods Reviews). Retrieved http://eprints.ncrm.ac.uk/2273/4/how_many_interviews.pdf. - Back, L. (2012). How many qualitative interviews is enough? In S. E. Baker & R. Edwards (Ed.),
*How many qualitative interviews is enough? Expert voices and early career reflections on sampling and cases in qualitative research*(43 pp). National Centre for Research Methods: Southampton, GB. National Centre for Research Methods Reviews. Retrieved http://eprints.ncrm.ac.uk/2273/4/how_many_interviews.pdf. - Biggs, J. B. (1987).
*Student approaches to learning and studying*. Melbourne: Australian Council for Educational Research.Google Scholar - Brown, A. (1987). Metacognition, executive control, self regulation and mysterious mechanisms. In Weinert and Klume (Eds.),
*Metacognition, motivation and understanding*(pp. 65–117). New Jersery: Erlbaum Hillside.Google Scholar - Chang, S. C. A., & Ang, W. H. (1999, July).
*Emotions, values, good thinking.*Paper presented at the 8th International Conference on Thinking, Edmonton, Canada.Google Scholar - Chi, M. T. H., Bassok, M., Lewis, M. W., Reimann, P., & Glaser, R. (1989). Self-explanations: How students study and use examples in learning to solve problems.
*Cognitive Science,**13,*145–182.CrossRefGoogle Scholar - Clarke, D. (1992). The role of assessment in determining mathematics performance. In G. Leder (Ed.),
*Assessment and learning in mathematics*(pp. 145–168). Hawthorn, Victoria: ACER.Google Scholar - Cohen, L., & Manion, L. (1994).
*Research methods in education*(4th ed.). London: Routledge.Google Scholar - Cromley, J., & Azevedo, R. (2011). Measuring strategy use in context with multiple-choice items.
*Metacognition and Learning,**6,*155–177.CrossRefGoogle Scholar - Crouch, M., & McKenzie, H. (2006). The logic of small samples in interview based qualitative research.
*Social Science Information,**45*(4), 483–499.CrossRefGoogle Scholar - Efklides, A. (2006). Metacognitive and affect: What can metacognitive experiences tell us about the learning process?
*Educational Research Review,**1,*3–14.CrossRefGoogle Scholar - Ericsson, K. A. (2006). Protocol analysis and expert thought: Concurrent verbalizations of thinking during experts’ performance on representative tasks. In K. A. Ericsson, N. Charness, P. J. Feltovich, & R. R. Hoffman (Eds.),
*The Cambridge handbook of expertise and expert performance*(pp. 223–241). New York: Cambridge University Press.CrossRefGoogle Scholar - Ericsson, K. A., & Simon, H. (1980). Verbal reports as data.
*Psychological Review,**87,*215–251.CrossRefGoogle Scholar - Flavell, J. H. (1979). Metacognitive and cognitive monitoring: A new area of cognitive-developmental inquiry.
*American Psychologist,**34*(10), 906–911.CrossRefGoogle Scholar - Flick, U. (2012). How many qualitative interviews is enough? In S.E. Baker & R. Edwards (Eds.),
*How many qualitative interviews is enough? Expert voices and early career reflections on sampling and cases in qualitative research*(43 pp). National Centre for Research Methods: Southampton, GB. National Centre for Research Methods Reviews. Retrieved http://eprints.ncrm.ac.uk/2273/4/how_many_interviews.pdf. - Fortunato, I., Hecht, D., Kehr, C., Tittle, C., & Alvarex, L. (1991). Metacognition and problem solving.
*Arithmetic Teacher,**39*(4), 38–40.Google Scholar - Garofalo, J., & Lester, F. K., Jr. (1985). Metacognition, cognitive monitoring and mathematical performance.
*Journal for Research in Mathematics Education,**16*(3), 163–176.CrossRefGoogle Scholar - Genest, M., & Turk, D. (1981). Think-aloud approaches to cognitive assessment. In T. V. Merluzzi, C. R. Glass, & M. Genest (Eds.),
*Cognitive assessment*(pp. 233–269). New York: The Guilford Press.Google Scholar - Ginsburg, H. P., Kossan, N. E., Schwartz, R., & Swanson, D. (1983). Protocol methods in research on mathematical thinking. In Ginsburg, H. (Ed.),
*The development of mathematical thinking*(pp. 7–47). New York, Academic Press.Google Scholar - Goos, M., & Galbraith, P. (1996). Do it this way! Metacognitive strategies in collaborative mathematical problem solving.
*Educational Studies in Mathematics,**30,*229–260.CrossRefGoogle Scholar - Hacker, D. J. (1998). Metacognition in educational theory and practice. In D. J. Hacker, J. Dinlosky, & A. Graesser (Eds.),
*Definitions and empirical foundations*(pp. 93–115). Greenrich, CT: Information Age Publishing.Google Scholar - Jacobse, A. E., & Harskamp, E. G. (2012). Towards efficient measurement of metacognition in mathematical problem solving.
*Metacognition Learning,**7,*133–149.CrossRefGoogle Scholar - Lee, N. H. (2008).
*Enhancing Mathematical learning and achievement of secondary one normal (Academic) students using metacognitive strategies*(Unpublished doctoral thesis). Nanyang Technological University, Singapore.Google Scholar - Loh, M. Y. (2015).
*Metacognitive strategies secondary one students employed while solving mathematics problems*(Unpublished doctoral thesis). Nanyang Technological University, Singapore.Google Scholar - Ministry of Education. (2007).
*A guide to teaching and learning of primary mathematics*. Singapore Curriculum Planning and Development Division, Ministry of Education.Google Scholar - Ministry of Education. (2012).
*Primary mathematics teaching and learning syllabus*. Singapore Curriculum Planning and Development Division, Ministry of Education.Google Scholar - Moccoby, E. E., & Jacklin, C. N. (1974).
*Psychology of sex differences*. Palo Alto, California: Stanford University Press.Google Scholar - National Council of Teachers of Mathematics. (2000).
*Principles and standards for school mathematics*. Reston, VA: NCTM.Google Scholar - Nietfeld, J. L., Cao, L., & Osborne, J. W. (2005). Metacognitive monitoring accuracy and student performance in the postsecondary classroom.
*The Journal of Experimental Education,**74*(1), 7–28.Google Scholar - O’Neil, H. F., Jr., & Abedi, J. (1996). Reliability and validity of a state metacognitive inventory: Potential for alternate assessment.
*Journal of Education Research,**89,*234–245.CrossRefGoogle Scholar - O’Neil, H. F., Jr., & Brown, R. S. (1998). Differential effects of question formats in math assessment on metacognition and affect.
*Applied Measurement in Education,**11*(4), 331–351.CrossRefGoogle Scholar - Pintrich, P. R., & De Groot, E. V. (1990). Motivational and self-regulated learning components of classroom academic performance.
*Journal of Educational Psychology,**82,*33–40.CrossRefGoogle Scholar - Pintrich, P. R., Wolters, C., & Baxter, G. (2000). Assessing metacognition and self-regulated learning. In G. Schraw & J. Impara (Eds.),
*Issues in the measurement of metacognition*(pp. 43–97). Lincoln, NE: Buros Institute of Mental Measurements.Google Scholar - Pólya, G. (1957).
*How to solve it*. Princeton: Princeton University Press.Google Scholar - Pugalee, D. K. (2001). Writing mathematics, and metacognition: Looking for connections through students’ work in mathematical problem solving.
*School Science and Mathematics,**101*(5), 236–245.CrossRefGoogle Scholar - Schellings, G., & Van Hout-Wolters, B. H. A. M. (2011). Measuring strategy use with self-report instruments: Theoretical and empirical considerations.
*Metacognition and Learning,**6,*83–90.CrossRefGoogle Scholar - Schoenfeld, A. H. (1982).
*Expert and novice mathematical problem solving*. Final Project Report and Appendices B-H. MI: National Science Foundation, Washington, D.C. (ERIC Document Reproduction Service No. ED218124).Google Scholar - Schoenfeld, A. H. (1985).
*Mathematical problem solving*. Orlando, FL: Academic.Google Scholar - Schraw, G., & Dennison, R. S. (1994). Assessing metacognitive awareness.
*Contemporary Educational Psychology,**19,*460–475.CrossRefGoogle Scholar - Schraw, G., & Moshman, D. (1995). Metacognition theories.
*Educational Psychological Review,**7,*351–371.CrossRefGoogle Scholar - Solas, J. (1992). Investigating teacher and student thinking about the process of teaching and learning using autobiography and repertory grid.
*Review of Educational Research,**62,*205–225.CrossRefGoogle Scholar - Sperling, R., Howard, L., & Murphy, C. (2002). Measures of children’s knowledge and regulation of cognition.
*Contemporary Educational Psychology,**27,*51–79.CrossRefGoogle Scholar - Stacey, K. (1990). Making optimal use of mathematical knowledge.
*Australian Journal of Remedial Education,**22,*6–10.Google Scholar - Thorpe, K., & Satterly, D. (1990). The development and interrelationship of metacognitive components among primary school children.
*Educational Psychology,**10*(1), 5–21.CrossRefGoogle Scholar - Veenman, M. V. J. (2005). The assessment of metacognitive skills: What can be learned from multi-method designs? In C. Artelt & B. Moschner (Eds.),
*Lernstrategien und Metakognition: Implikationen fÜr Forschung und Praxis*(pp. 77–99). MÜnster: Waxmann.Google Scholar - Webb, E., Campbell, D., Schwartz, R., & Sechrest, L. (1966).
*Unobtrusive measures*. Chicago: Rand Mc Nally.Google Scholar - Wilson, J. (1997).
*Beyond the basics: Assessing students’ metacognition*. Paper presented at the Annual Meeting of the Hong Kong Educational Research Association, Hong Kong, 14 November 1997 (ERIC Document Reproduction Service ER415244).Google Scholar - Wilson, J. (1998, June).
*The nature of metacognition: What do primary school problem solvers do?*Paper presented at the National AREA Conference, Melbourne, Australia (ERIC Document Reproduction Service ER422315).Google Scholar - Wilson, J. (2001, December).
*Methodological Difficulties of Assessing Metacognition: A New Approach*. Paper presented at the Annual Meeting of the Australian Association for Research in Education, Fremantel, Western Australia, Australia.Google Scholar - Wong, P. (1989, November).
*Students’ metacognition in mathematical problem solving.*Paper presented at the Annual Meeting of the Australian Association for Research in Education (November 28–December 2).Google Scholar