Advertisement

Fully Fuzzy Linear Programming Model for the Berth Allocation Problem with Two Quays

  • Flabio GutierrezEmail author
  • Edwar LujanEmail author
  • Rafael AsmatEmail author
  • Edmundo VergaraEmail author
Chapter
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 377)

Abstract

In this work, we study the berth allocation problem (BAP), considering the cases continuous and dynamic for two quays; also, we assume that the arrival time of vessels is imprecise, meaning that vessels can be late or early up to a allowed threshold. Triangular fuzzy numbers represent the imprecision of the arrivals. We present two models for this problem: The first model is a fuzzy MILP (Mixed Integer Lineal Programming) and allows us to obtain berthing plans with different degrees of precision; the second one is a model of Fully Fuzzy Linear Programming (FFLP) and allows us to obtain a fuzzy berthing plan adaptable to possible incidences in the vessel arrivals. The models proposed have been implemented in CPLEX and evaluated in a benchmark developed to this end. For both models, with a timeout of 60 min, CPLEX find the optimum solution for instances up to 10 vessels; for instances between 10 and 65 vessels it finds a non-optimum solution and for bigger instants no solution is founded. Finally we suggest the steps to be taken to implement the model for the FFLP BAP in a maritime terminal of containers.

Notes

Acknowledgements

This work was supported by INNOVATE-PERU, Project N PIBA-2-P-069-14.

References

  1. 1.
    Bierwirth, C., Meisel, F.: A survey of berth allocation and quay crane scheduling problems in container terminals. Eur. J. Oper. Res. 202(3), 615–627 (2010)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bruggeling, M., Verbraeck, A., Honig, H.: Decision support for container terminal berth planning: integration and visualization of terminal information. In: Proceedings of Van de Vervoers logistieke Werkdagen (VLW2011), pp. 263–283. University Press, Zelzate (2011)Google Scholar
  3. 3.
    Das, S.K., Mandal, T., Edalatpanah, S.A.: A mathematical model for solving fully fuzzy linear programming problem with trapezoidal fuzzy numbers. Appl. Intell. 46(3), 509–519 (2017)CrossRefGoogle Scholar
  4. 4.
    Exposito-Izquiero, C., Lalla-Ruiz, E., Lamata, T., Melian-Batista, B., Moreno-Vega, J.: Fuzzy optimization models for seaside port logistics: berthing and quay crane scheduling. Computational Intelligence, pp. 323–343. Springer International Publishing, Cham (2016)CrossRefGoogle Scholar
  5. 5.
    Gutierrez, F., Vergara, E., Rodrguez, M., Barber, F.: Un modelo de optimización difuso para el problema de atraque de barcos. Investig. Oper. 38(2), 160–169 (2017)Google Scholar
  6. 6.
    Gutierrez, F., Lujan, E., Vergara, E., Asmat, R.: A fully fuzzy linear programming model to the berth allocation problem. Ann. Comput. Sci. Inf. Syst. 11, 453–458 (2017)Google Scholar
  7. 7.
    Frojan, P., Correcher, J., Alvarez-Valdez, R., Kouloris, G., Tamarit, J.: The continuous Berth Allocation Problem in a container terminal with multiple quays. Exp. Syst. Appl. 42(21), 7356–7366 (2015)CrossRefGoogle Scholar
  8. 8.
    Jimenez, M., Arenas, M., Bilbao, A., Rodríguez, M.V.: Linear programming with fuzzy parameters: an interactive method resolution. Eur. J. Oper. Res. 177(3), 1599–1609 (2007)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Kim, K., Moon, K.C.: Berth scheduling by simulated annealing. Transp. Res. Part B Methodol. 37(6), 541–560 (2003)CrossRefGoogle Scholar
  10. 10.
    Lalla-Ruiz, E., Melin-Batista, B., Moreno-Vega, J.: cooperative search for berth scheduling. Knowl. Eng. Rev. 31(5), 498–507 (2016)CrossRefGoogle Scholar
  11. 11.
    Laumanns, M., et al.: Robust adaptive resource allocation in container terminals. In: Proceedings of 25th Mini-EURO Conference Uncertainty and Robustness in Planning and Decision Making, Coimbra, Portugal, pp. 501–517 (2010)Google Scholar
  12. 12.
    Lim, A.: The berth planning problem. Oper. Res. Lett. 22(2), 105–110 (1998)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Luhandjula, M.K.: Fuzzy mathematical programming: theory, applications and extension. J. Uncertain Syst. 1(2), 124–136 (2007)Google Scholar
  14. 14.
    Nasseri, S.H., Behmanesh, E., Taleshian, F., Abdolalipoor, M., Taghi-Nezhad, N.A.: Fully fuzzy linear programming with inequality constraints. Int. J. Ind. Math. 5(4), 309–316 (2013)Google Scholar
  15. 15.
    Rodriguez-Molins, M., Ingolotti, L., Barber, F., Salido, M.A., Sierra, M.R., Puente, J.: A genetic algorithm for robust berth allocation and quay crane assignment. Prog. Artif. Intell. 2(4), 177–192 (2014)CrossRefGoogle Scholar
  16. 16.
    Rodriguez-Molins, M., Salido, M.A., Barber, F.: A GRASP-based metaheuristic for the Berth allocation problem and the quay crane assignment problem by managing vessel cargo holds. Appl. Intell. 40(2), 273–290 (2014)CrossRefGoogle Scholar
  17. 17.
    Steenken, D., Vo, S., Stahlbock, R.: Container terminal operation and operations research-a classification and literature review. OR Spectr. 26(1), 3–49 (2004)CrossRefGoogle Scholar
  18. 18.
    UNCTAD: Container port throughput, annual, 2010–2016. http://unctadstat.unctad.org/wds/TableViewer/tableView.aspx?ReportId=13321. Accessed 02 March 2018
  19. 19.
    Wang, X., Kerre, E.: Reasonable properties for the ordering of fuzzy quantities (I). Fuzzy Sets Syst. 118(3), 375–385 (2001)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Yager, R.R.: A procedure for ordering fuzzy subsets of the unit interval. Inf. Sci. 24(2), 143–161 (1981)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Young-Jou, L., Hwang, C.: Fuzzy Mathematical Programming: Methods and Applications, vol. 394. Springer Science & Business Media, Berlin (2012)zbMATHGoogle Scholar
  22. 22.
    Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 100, 9–34 (1999)CrossRefGoogle Scholar
  23. 23.
    Zhen, L., Lee, L.H., Chew, E.P.: A decision model for berth allocation under uncertainty. Eur. J. Oper. Res. 212(3), 54–68 (2011)CrossRefGoogle Scholar
  24. 24.
    Zimmermann, H.: Fuzzy Set Theory and its Applications, Fourth Revised edn. Springer, Dordrecht (2001)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsNational University of PiuraPiuraPeru
  2. 2.Department of InformaticsNational University of TrujilloTrujilloPeru
  3. 3.Department of MathematicsNational University of TrujilloTrujilloPeru

Personalised recommendations