Advertisement

Characterization of the Optimal Bucket Order Problem Instances and Algorithms by Using Fuzzy Logic

  • Juan A. AledoEmail author
  • José A. Gámez
  • Orenia Lapeira
  • Alejandro Rosete
Chapter
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 377)

Abstract

The problem of aggregating several rankings in order to obtain a consensus ranking that generalizes them is an active field of research with several applications. The Optimal Bucket Order Problem (OBOP) is a rank aggregation problem where the resulting ranking may be partial, i.e. ties are allowed. Several algorithms have been proposed for OBOP. However, their performances with respect to the characteristics of the instances are not studied properly. This paper uses fuzzy logic in order to describe different aspects of OBOP instances (such as the number of items to be ranked, distribution of the precedences values, and the utopicity) and the performance of several OBOP algorithms. Based on this fuzzy characterization, several fuzzy relations between instance characteristics and the performance of the algorithms have been discovered.

References

  1. 1.
    Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: ranking and clustering. J. ACM 55:5, 23:1–23:27 (2008)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Alcalá, J., Fernández, A., Luengo, J., Derrac, J., García, S., Sánchez, L., Herrera, F.: KEEL data-mining software tool: data set repository, integration of algorithms and experimental analysis framework. J. Mult. Valued Logic Soft Comput. 17, 255–287 (2010)Google Scholar
  3. 3.
    Aledo, J. A., Gámez, J. A., Molina, D., Rosete, A.: Consensus-based journal rankings: a complementary tool for bibliometric evaluation. J. Assoc. Inf. Sci. Technol. (2018). http://dx.doi.org/10.1002/asi.24040
  4. 4.
    Aledo, J.A., Gámez, J.A., Rosete, A.: Approaching rank aggregation problems by using evolution strategies: the case of the optimal bucket order problem. European J. Oper. Res. (2018). http://dx.doi.org/10.1016/j.ejor.2018.04.031
  5. 5.
    Aledo, J.A., Gámez, J.A., Molina, D.: Using extension sets to aggregate partial rankings in a flexible setting. Appl. Math. Comput. 290, 208–223 (2016)MathSciNetGoogle Scholar
  6. 6.
    Aledo, J.A., Gámez, J.A., Rosete, A.: Utopia in the solution of the Bucket Order Problem. Decis. Support Syst. 97, 69–80 (2017)CrossRefGoogle Scholar
  7. 7.
    Ali, A., Meila, M.: Experiments with kemeny ranking: what works when? Math. Social Sci. 64, 28–40 (2012)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bailey, R.W.: The number of weak orderings of a finite set. Soc. Choice Welf. 15(4), 559–562 (1998)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum, New York, NY (1981)CrossRefGoogle Scholar
  10. 10.
    Borda, J.: Memoire sur les Elections au Scrutin. Histoire de l’Academie Royal des Sciences (1781)Google Scholar
  11. 11.
    Ceruto, T., Lapeira, O., Rosete, A.: Quality measures for fuzzy predicates in conjunctive and disjunctive normal form. Ingeniería e Investigación 3(4), 63–69 (2014)CrossRefGoogle Scholar
  12. 12.
    Derrac, J., García, S., Molina, D., Herrera, F.: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 1(1), 3–18 (2011)CrossRefGoogle Scholar
  13. 13.
    Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank aggregation methods for the web. In: Proceedings of the 10th International Conference on World Wide Web, WWW ’01, pp. 13–22. ACM (2001)Google Scholar
  14. 14.
    Emerson, P.: The original Borda count and partial voting. Soc. Choice Welf. 40(2), 353–358 (2013)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Fagin, R., Kumar, R., Mahdian, M., Sivakumar, D., Vee, E.: Comparing and Aggregating Rankings with Ties. In: PODS 2004, pp. 47–58. ACM (2004)Google Scholar
  16. 16.
    Feng, J., Fang, Q., Ng, W.: Discovering bucket orders from full rankings. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 55–66. ACM (2008)Google Scholar
  17. 17.
    Fürnkranz, J., Hüllermeier, E.: Preference learning: an introduction. In: Fürnkranz, J., Hüllermeier, E. (eds.), Preference Learning, pp. 1–17. Springer (2011)Google Scholar
  18. 18.
    Gionis, A., Mannila, H., Puolamäki, K., Ukkonen, A.: Algorithms for discovering bucket orders from data. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’06, pp. 561–566. ACM (2006)Google Scholar
  19. 19.
    Hullermeier, E.: Does machine learning need fuzzy logic? Fuzzy Sets Syst. 281, 292–299 (2015)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Kemeny, J.L., Snell, J.G.: Mathematical Models in the Social Sciences. Blaisdell-New York (1962)Google Scholar
  21. 21.
    Kenkre, S., Khan, A., Pandit, V.: On Discovering bucket orders from preference data. In: Proceedings of the 2011 SIAM International Conference on Data Mining, pp. 872–883. SIAM (2011)Google Scholar
  22. 22.
    Mattei, N., Walsh, T.: PrefLib: A Library for Preferences http://www.preflib.org. In: Perny, P., Pirlot, M., Tsoukiàs, A. (eds.) 2003 Proceedings of Third International Conference on Algorithmic Decision Theory, ADT, pp. 259–270. Springer (2013)Google Scholar
  23. 23.
    Nápoles, G., Dikopoulou, Z., Papageorgiou, E., Bello, R., Vanhoof, K.: Prototypes construction from partial rankings to characterize the attractiveness of companies in Belgium. Appl. Soft Comput. 42, 276–289 (2016)CrossRefGoogle Scholar
  24. 24.
    Ukkonen, A., Puolamäki, K., Gionis, A., Mannila, H.: A randomized approximation algorithm for computing bucket orders. Inf. Process. Lett. 109(7), 356–359 (2009)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Juan A. Aledo
    • 1
    Email author
  • José A. Gámez
    • 1
  • Orenia Lapeira
    • 2
  • Alejandro Rosete
    • 2
  1. 1.Universidad de Castilla-La ManchaAlbaceteSpain
  2. 2.Universidad Tecnológica de La Habana “José Antonio Echeverría” (Cujae)HavanaCuba

Personalised recommendations