Solving a Fuzzy Tourist Trip Design Problem with Clustered Points of Interest

  • Airam ExpósitoEmail author
  • Simona Mancini
  • Julio Brito
  • José A. Moreno
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 377)


This paper introduces a route-planning problem with applications in tourism. The goal of the Tourist Trip Design Problem is to maximize the number of points of interest to visit. We propose a new variant, in our view more realistic, where on the one hand, the points of interest are clustered in various categories and on the other, the scores and travel time constraints are fuzzy. In this work time constraints are modeled as fuzzy. A fuzzy optimization approach and an efficient greedy randomized adaptive search procedure are applied to solve the problem. The computational experiments indicate that this soft computing approach is able to find significant solutions.


Tourist trip design problem The team orienteering problem with time windows Clustered point of interest Fuzzy constraints Fuzzy optimization Greedy randomized adaptive search procedure 



This work has been partially funded by the Spanish Ministry of Economy and Competitiveness with FEDER funds (TIN2015-70226-R) and supported by Fundación Cajacanarias research funds (project 2016TUR19) and the iMODA Network of the AUIP. Contributions from Airam Expósito-Márquez is supported by la Agencia Canaria de Investigación, Innovación y Sociedad de la Información de la Consejería de Economía, Industria, Comercio y Conocimiento and by the Fondo Social Europeo (FSE).


  1. 1.
    Bellman, R., Zadeh, L.: Decision making in a fuzzy environment. Manag. Sci. 17(4), 141–164 (1970)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Brito, J., Expósito, A., Moreno, J.A.: Solving the team orienteering problem with fuzzy scores and constraints. In: 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1614–1620. IEEE (2016)Google Scholar
  3. 3.
    Chao, I.M., Golden, B.L., Wasil, E.A.: The team orienteering problem. European J. Oper. Res. 88(3), 464–474 (1996)CrossRefGoogle Scholar
  4. 4.
    Cura, T.: An artificial bee colony algorithm approach for the team orienteering problem with time windows. Comput. Ind. Eng. 74, 270–290 (2014)CrossRefGoogle Scholar
  5. 5.
    Delgado, M., Verdegay, J., Vila, M.: A general model for fuzzy linear programming. Fuzzy Sets Syst. 29, 21–29 (1989)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Feo, T.A., Resende, M.G.C.: Greedy randomized adaptive search procedures. J. Glob. Optim. 6, 109–133 (1995)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Gavalas, D., Konstantopoulos, C., Mastakas, K., Pantziou, G., Tasoulas, Y.: Cluster-based heuristics for the team orienteering problem with time windows. In: International Symposium on Experimental Algorithms, pp. 390–401. Springer (2013)Google Scholar
  8. 8.
    Hu, Q., Lim, A.: An iterative three-component heuristic for the team orienteering problem with time windows. European Journal of Operational Research 232(2), 276–286 (2014)CrossRefGoogle Scholar
  9. 9.
    Karbowska-Chilinska, J., Zabielski, P.: Genetic algorithm solving the orienteering problem with time windows. In: Advances in Systems Science, pp. 609–619. Springer (2014)Google Scholar
  10. 10.
    Labadie, N., Melechovský, J., Wolfler Calvo, R.: Hybridized evolutionary local search algorithm for the team orienteering problem with time windows. J. Heur. 17(6), 729–753 (2011)CrossRefGoogle Scholar
  11. 11.
    Labadie, N., Mansini, R., Melechovsk, J., Calvo, R.W.: The team orienteering problem with time windows: An lp-based granular variable neighborhood search. European J. Oper. Res. 220(1), 15–27 (2012)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Matsuda, Y., Nakamura, M., Kang, D., Miyagi, H.: A fuzzy optimal routing problem for sightseeing. IEEJ Trans. Electron. Inf. Syst. 125, 1350–1357 (2005)Google Scholar
  13. 13.
    Mendez, C.E.C.: Team Orienteering Problem with Time Windows and Fuzzy Scores. Ph.D. thesis, National Taiwan University of Science and Technology (2016)Google Scholar
  14. 14.
    Montemanni, R., Gambardella, L.: An ant colony system for team orienteering problems with time windows. Found. Comput. Decis. Sci. 34(4), 287–306 (2009)zbMATHGoogle Scholar
  15. 15.
    Resende, M.G., Ribeiro, C.C.: Greedy randomized adaptive search procedures: advances, hybridizations, and applications. In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics, International Series in Operations Research and Management Science, vol. 146, pp. 283–319. Springer, US (2010)Google Scholar
  16. 16.
    Souffriau, W., Vansteenwegen, P., Berghe, G.V., Oudheusden, D.: A greedy randomised adaptive search procedure for the team orienteering problem. In: proceedings of EU/MEeting (2008)Google Scholar
  17. 17.
    Vansteenwegen, P., Oudheusden, D.V.: The mobile tourist guide: an or opportunity. OR Insight 20(3), 21–27 (2007)CrossRefGoogle Scholar
  18. 18.
    Vansteenwegen, P., Souffriau, W., Berghe, G.V., Oudheusden, D.V.: Iterated local search for the team orienteering problem with time windows. Comput. Oper. Res. 36(12), 3281–3290 (2009)CrossRefGoogle Scholar
  19. 19.
    Vansteenwegen, P., Souffriau, W., Berghe, G.V., Oudheusden, D.V.: The city trip planner: an expert system for tourists. Expert Syst. Appl. 38(6), 6540–6546 (2011)CrossRefGoogle Scholar
  20. 20.
    Verdegay, J.: Fuzzy Information and Decision Processes, Chap. Fuzzy Mathematical Programming. North-Holland (1982)Google Scholar
  21. 21.
    Verdegay, J.L.: Fuzzy optimization: models, methods and perspectives. In: In proceeding 6th IFSA-95 World Congress, pp. 39–71 (1995)Google Scholar
  22. 22.
    Verdegay, J.L., Yager, R.R., Bonissone, P.P.: On heuristics as a fundamental constituent of soft computing. Fuzzy Sets Syst. 159, 846–855 (2008)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Verma, M., Shukla, K.K.: Application of fuzzy optimization to the orienteering problem. Adv. Fuzzy Syst. 2015, 8 (2015)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Airam Expósito
    • 1
    Email author
  • Simona Mancini
    • 2
  • Julio Brito
    • 1
  • José A. Moreno
    • 1
  1. 1.Departamento de Ingeniería Informática y de SistemasInstituto Universitario de Desarrollo Regional, Universidad de La LagunaSan Cristóbal de La Laguna, Canary IslandsSpain
  2. 2.Universit di CagliariCagliariItaly

Personalised recommendations