Genetic Fuzzy System for Automating Maritime Risk Assessment

  • Alexander TeskeEmail author
  • Rafael Falcon
  • Rami Abielmona
  • Emil Petriu
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 377)


This chapter uses genetic fuzzy systems (GFS) to assess the risk level of maritime vessels transmitting Automatic Identification System (AIS) data. Previous risk assessment approaches based on fuzzy inference systems (FIS) relied on domain experts to specify the FIS membership functions as well as the fuzzy rule base (FRB), a burdensome and time-consuming process. This chapter aims to alleviate this burden by learning the membership functions and FRB for the FIS of an existing Risk Management Framework (RMF) directly from data. The proposed methodology is tested with four different case studies in maritime risk analysis. Each case study concerns a unique scenario involving a particular region: the Gulf of Guinea, the Strait of Malacca, the Northern Atlantic during a storm, and the Northern Atlantic during a period of calm seas. The experiments compare 14 GFS algorithms from the KEEL software package and evaluate the resulting FRBs according to their accuracy and interpretability. The results indicate that IVTURS, LogitBoost, and NSLV generate the most accurate rule bases while SGERD, GCCL, NSLV, and GBML each generate interpretable rule bases. Finally, IVTURS, NSLV, and GBML algorithms offer a reasonable compromise between accuracy and interpretability.


Maritime domain awareness Risk management Genetic algorithms Fuzzy systems Multi-objective optimization 



The authors acknowledge the financial support of the Ontario Centres of Excellence (OCE) and the National Sciences and Engineering Research Council of Canada (NSERC) for the project entitled “Big Data Analytics for the Maritime Internet of Things”.


  1. 1.
    Abielmona, R.: Tackling big data in maritime domain awareness. Vanguard, 42–43 (2013)Google Scholar
  2. 2.
    Falcon, R., Abielmona, R., Nayak, A.: An evolving risk management framework for wireless sensor networks. In: Proceedings of the 2011 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications (CIMSA), pp. 1–6, Ottawa, Canada (2011)Google Scholar
  3. 3.
    Falcon, R., Abielmona, R.: A response-aware risk management framework for search-and-rescue operations. In: 2012 IEEE Congress on Evolutionary Computation (CEC), pp. 1540–1547, Brisbane, Australia (2012)Google Scholar
  4. 4.
    Alcalá-Fdez, J., Sánchez, L., García, S., del Jesus, M.J., Ventura, S., Garrell, J.M., Otero, J., Romero, C., Bacardit, J., Rivas, V.M., Fernández, J.C., Herrera, F.: Keel: a software tool to assess evolutionary algorithms for data mining problems. Soft Comput. 13(3), 307–318 (2009)CrossRefGoogle Scholar
  5. 5.
    International Maritime Organization: Guidelines for Formal Safety Assessment (FSA) for use in the IMO Rule-Making Process (2002)Google Scholar
  6. 6.
    International Association of Classification Societies: A guide to risk assessment in ship operations (2012)Google Scholar
  7. 7.
    Falcon, R., Desjardins, B., Abielmona, R., Petriu, E.: Context-driven dynamic risk management for maritime domain awareness. In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–8. IEEE (2016)Google Scholar
  8. 8.
    Friedman, N.: The Naval Institute Guide to World Naval Weapon Systems. Naval Institute Press (2006)Google Scholar
  9. 9.
    Moore, K.E.: Predictive analysis for naval deployment activities. PANDA BAA, 05-44 (2005)Google Scholar
  10. 10.
    Lim, I., Jau, F.: Comprehensive maritime domain awareness: an idea whose time has come? In: Defence, Terrorism and Security, Globalisation and International Trade (2007)Google Scholar
  11. 11.
    Mamdani, E.H.: Application of Fuzzy Logic to Approximate Reasoning Using Linguistic SynthesisGoogle Scholar
  12. 12.
    Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. SMC-15(1), 116–132 (1985)CrossRefGoogle Scholar
  13. 13.
    Karr, C.: Genetic algorithms for fuzzy controllers. AI Expert 6(2), 26–33 (1991)Google Scholar
  14. 14.
    Valenzuela-Rendón, M.: The Fuzzy Classifier System: a Classifier System for Continuously Varying Variables (1991)Google Scholar
  15. 15.
    Herrera, F., Magdalena, L.: Genetic Fuzzy Systems: A Tutorial, vol. 13, pp. 93–121. Tatra Mountains Mathematical Publications (1997)Google Scholar
  16. 16.
    Thrift, P.R.: Fuzzy Logic Synthesis with Genetic Algorithms (1991)Google Scholar
  17. 17.
    Herrera, F.: Genetic fuzzy systems: taxonomy, current research trends and prospects. Evol. Intell. 1(1), 27–46 (2008)CrossRefGoogle Scholar
  18. 18.
    Dong, W., Huang, Z., Ji, L., Duan, H.: A genetic fuzzy system for unstable angina risk assessment. BMC Med. Inform. Decis. Mak. 14, 12 (2014)Google Scholar
  19. 19.
    Nouei, M.T., Kamyad, A.V., Sarzaeem, M.R., Ghazalbash, S.: Developing a genetic fuzzy system for risk assessment of mortality after cardiac surgery. J. Med. Syst. 38(10), 102 (2014)Google Scholar
  20. 20.
    Aznarte, J.L., Alcalá-Fdez, J., Arauzo-Azofra, A., Benítez, J.M.: Financial time series forecasting with a bio-inspired fuzzy model. Expert Syst. Appl. 39(16), 12302–12309 (2012)CrossRefGoogle Scholar
  21. 21.
    Liu, C.-F., Yeh, C.-Y., Lee, S.-J.: Application of type-2 neuro-fuzzy modeling in stock price prediction. Appl. Soft Comput. 12(4), 1348–1358 (2012)CrossRefGoogle Scholar
  22. 22.
    Serdio, F., Lughofer, E., Pichler, K., Buchegger, T., Efendic, H.: Residual-based fault detection using soft computing techniques for condition monitoring at rolling mills. Inf. Sci. 259, 304–320 (2014)CrossRefGoogle Scholar
  23. 23.
    Ramli, A.A., Watada, J., Pedrycz, W.: A combination of genetic algorithm-based fuzzy c-means with a convex hull-based regression for real-time fuzzy switching regression analysis: application to industrial intelligent data analysis. IEEJ Trans. Electr. Electron. Eng. 9(1), 71–82 (2014)Google Scholar
  24. 24.
    Fernández, A., López, V., Del Jesus, M.J., Herrera, F.: Revisiting Evolutionary Fuzzy Systems: taxonomy, applications, new trends and challenges. Knowl. Based Syst. 80, 109–121 (2015)CrossRefGoogle Scholar
  25. 25.
    Bowditch, N.: Weather routing. In: The American Practical Navigator: An Epitome of Navigation, p. 896 (2002)Google Scholar
  26. 26.
    Falcon, R., Abielmona, R., Billings, S., Plachkov, A., Abbass, H.: Risk management with hard-soft data fusion in maritime domain awareness. In: The 2014 Seventh IEEE Symposium on Computational Intelligence for Security and Defense Applications (CISDA), pp. 1–8 (2014)Google Scholar
  27. 27.
    Calamur, K.: High traffic, high risk in the strait of Malacca. In: The Atlantic (2017)Google Scholar
  28. 28.
    World Meteorological Organization: Guide to GRIB (2003)Google Scholar
  29. 29.
    Gacto, M.J., Alcalá, R., Herrera, F.: Interpretability of linguistic fuzzy rule-based systems: an overview of interpretability measures. Inf. Sci. 181(20), 4340–4360 (2011)CrossRefGoogle Scholar
  30. 30.
    Derrac, J., García, S., Molina, D., Herrera, F.: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 1(1), 3–18 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alexander Teske
    • 1
    Email author
  • Rafael Falcon
    • 1
    • 2
  • Rami Abielmona
    • 1
    • 2
  • Emil Petriu
    • 1
  1. 1.School of Electrical Engineering and Computer ScienceUniversity of OttawaOttawaCanada
  2. 2.Research & Engineering DivisionLarus Technologies CorporationOttawaCanada

Personalised recommendations