Advertisement

Introduction

  • Fernando SansòEmail author
  • Mirko Reguzzoni
  • Riccardo Barzaghi
Chapter
Part of the Springer Geophysics book series (SPRINGERGEOPHYS)

Abstract

A height is a coordinate in \(\mathcal {R}^3\), used in a certain subset of our space, particularly in the framework of physical sciences of the Earth, to discriminate higher from lower points, in some sense to be specifically stated by the type of the height chosen.

References

  1. Anderson D.L. (2007). New theory of the Earth. Cambridge University Press, New York.Google Scholar
  2. Bomford G. (1952). Geodesy. Clarendon Press, Oxford.Google Scholar
  3. Drinkwater M.R., Floberghagen R., Haagmans R., Muzi D., Popescu A. (2003). GOCE: ESA’s first Earth Explorer Core mission. In: Beutler G., Drinkwater M.R., Rummel R., Von Steiger R. (eds), Earth gravity field from space-from sensors to Earth science, Space Sciences Series of ISSI, 17:419–432, Springer, Dordrecht.Google Scholar
  4. Eremeev V.F., Yurkina M.I. (1974). Theorie der Höhen im Gravitationsfeld der Erde. Arbeiten aus dem Vermessungs und Kartenwesen der Deutschen Demokratischen Republik, Band 32, Teil 1. Geodätischer Dienst, Leipzig (in German).Google Scholar
  5. Grafarend E.W. (1975). Cartan frames and a foundation of physical geodesy. In: Brosowski B., Martensen E. (eds), Methoden und Verfahren der Mathematischen Physic, 12:179–208, BI-Verlag, Mannheim.Google Scholar
  6. Heiskanen W.A. and Moritz H. (1967). Physical geodesy. Freeman, San Francisco.CrossRefGoogle Scholar
  7. Hotine M. (1969). Mathematical geodesy. ESSA Monograph 2, U.S. Department of Commerce, Washington, DC.Google Scholar
  8. Ihde J., Sànchez L., Barzaghi R., Drewes H., Förste C., Gruber T., Liebsch G., Marti U., Pail R., Sideris M. (2017). Definition and proposed realization of the International Height Reference System (IHRS). Surveys in Geophysics, 38(3):549–570.CrossRefGoogle Scholar
  9. Krarup T. (2006). Letters on Molodenskiy’s problem, III. In: Borre K. (Ed.) Mathematical Foundation of Geodesy. Springer Verlag, Berlin, Heidelberg.Google Scholar
  10. Lambeck K. (1988). Geophysical geodesy: The slow deformations of the Earth. Clarendon Press, Oxford.Google Scholar
  11. Marussi A. (1985). Intrinsic geodesy. Springer, Berlin.CrossRefGoogle Scholar
  12. Sansò F., Sideris M.G. (2013). Geoid determination: Theory and methods. Lecture Notes in Earth System Sciences, Vol. 110. Springer-Verlag, Berlin, Heidelberg.Google Scholar
  13. Tapley B., Reigber C. (2001). The GRACE mission: status and future plans. EOS. Trans. AGU,82(47), Fall Meet. Suppl., Abstract G41C-02.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Fernando Sansò
    • 1
    Email author
  • Mirko Reguzzoni
    • 1
  • Riccardo Barzaghi
    • 1
  1. 1.Department of Civil and Environmental Engineering (DICA)Politecnico di MilanoMilanItaly

Personalised recommendations