Computational Study of Aqueous Solvation of Vanadium (V) Complexes

  • Francisco J. MelendezEmail author
  • María Eugenia Castro
  • Jose Manuel Perez-Aguilar
  • Norma A. Caballero
  • Lisset Noriega
  • Enrique González Vergara
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 948)


Vanadium complexes are of great biological interest due to their antidiabetic and anticancer properties. Analyses of the aqueous solvation effects using explicit models in the octahydrated complexes of vanadium (V) linked to the tridentate ONO Schiff base (VL·(H2O)8), are performed. Here, L is the Schiff base 1-(((5-chloro-2-oxidophenyl)imine)methyl)naphthalen-2-olate. The complexes VL1, VL2, VL3 and VL4, include the functional groups –NH(CH3CH2)3, –CH2CH2CH3, and –CH2CH2CH2CH3, respectively. The explicit model is used to examine the effects of water molecules in the first solvation shell that surrounds the bis-peroxo-oxovanadate ion (two molecules per oxygen atom in the [VO(O2)2·(H2O)]). Computational calculations are performed using density functional theory (DFT)/M06-2X. A complete basis set (CBS) using correlation-consistent Dunning basis sets from double-ξ to quadruple-ξ is used. The solvation energies are analyzed in order to propose possible complex structures as the most relevant species in biological-like systems. The results indicate that, by including explicit water molecules in the first solvation shell, a particular stabilization trend in the octahydrated complexes (VL1–VL4)·(H2O)8 is observed with VL1·(H2O)8 < VL3·(H2O)8 < VL4·(H2O)8 < VL2·(H2O)8. Our results indicate that the complex VL3·(H2O)8, substituted with –CH2CH2CH3, presents the most stable ΔGSolv and hence, it might represent the more likely species in biological-like environments.


Vanadium (V) complexes Explicit solvation Density functionals 


  1. 1.
    Pessoa, J.C., Etcheverry, S., Gambino, D.: Coord. Chem. Rev. 301-302, 24–48 (2015)Google Scholar
  2. 2.
    Bernard, D.: Anticancer Res. 24, 1529–1544 (2004)Google Scholar
  3. 3.
    Ebrahimipour, S.Y., et al.: Polyhedron 93, 99–105 (2015)CrossRefGoogle Scholar
  4. 4.
    Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Peterson, K.A., Woon, D.E., Dunning Jr., T.H.: Benchmark calculations with correlated molecular wave functions. IV. The classical barrier height of the H+H2 → H2+H reaction. J. Chem. Phys. 100, 7410–7415 (1994)CrossRefGoogle Scholar
  6. 6.
    Dunning Jr., T.H.: J. Chem. Phys. 90, 1007–1023 (1989)Google Scholar
  7. 7.
    Jeffrey, H.P., Wadt, W.R.: J. Chem. Phys. 82, 299–310 (1985)Google Scholar
  8. 8.
    Zhao, Y., Truhlar, D.G.: Theor. Chem. Acc. 120, 215–241 (2008)CrossRefGoogle Scholar
  9. 9.
    Becke, A.D.: J. Chem. Phys. 98, 5648–5652 (1993)Google Scholar
  10. 10.
    Schaefer, A., Horn, H., Ahlrichs, R.: J. Chem. Phys. 97, 2571–2577 (1992)Google Scholar
  11. 11.
    Frisch, M.J., et al.: Gaussian 09, Revision A.02 Gaussian Inc.: Wallingford (2009)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Francisco J. Melendez
    • 1
    Email author
  • María Eugenia Castro
    • 2
  • Jose Manuel Perez-Aguilar
    • 1
  • Norma A. Caballero
    • 3
  • Lisset Noriega
    • 1
  • Enrique González Vergara
    • 2
  1. 1.Lab. de Química Teórica, Centro de Investigación. Depto. de Fisicoquímica, Facultad de Ciencias QuímicasBenemérita Universidad Autónoma de PueblaPueblaMexico
  2. 2.Centro de Química, Instituto de CienciasB. Universidad Autónoma de PueblaPueblaMexico
  3. 3.Facultad de Ciencias BiológicasBenemérita Universidad Autónoma de PueblaPueblaMexico

Personalised recommendations