Advertisement

Theoretical Calculation of Photoluminescence Spectrum Using DFT for Double-Wall Carbon Nanotubes

  • A. P. Rodríguez VictoriaEmail author
  • Javier Martínez Juárez
  • J. A. David Hernández de la Luz
  • Néstor David Espinosa-Torres
  • M. J. Robles-Águila
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 948)

Abstract

Using DFT theory, we calculated theoretically photoluminescence (PL) spectra of double-walled carbon nanotubes (DWCNTs). Using the supercomputer (LNS) tool, the photoluminescence spectra for eight double-walled nanotubes were calculated with the Gaussian09 software; the DWCNTs built are of the armchair/armchair type, (3,3)/(2,2), (6,6)/(3,3), (8,8)/(4,4), (10,10)/(5,5), (12,12)/(6,6), (14,14)/(7,7), (16,16)/(8,8) and (18,18)/(9,9). The calculations were obtained taking into account different DWCNT lengths ranging from 4.9 Å to 23.4 Å when changing the chirality (n, m) of the double-walled carbon nanotubes, as well as we considered the increase in their inter-radial distance ranging from 0.18 ≤ dR ≤ 0.62 nm. The objective of this work focuses on investigating the DWCNTs PL considering different atomic arrangements. The calculation was performed at a DFT level in which we used the Generalized Gradient Approximation (GGA) to establish the molecular geometries and the fundamental state energies. To obtain the results of the PL spectra, the DWCNTs were optimized in their ground state, with the hybrid function CAM-B3LYP, which is a mixed functional exchange and correlation and the base set that was used is the 6–31 G.

Keywords

Photoluminescence DWCNT Spectrum DFT Radial distance 

Notes

Acknowledgment

“The authors thankfully acknowledge the computer resources, technical expertise and support provided by the Laboratorio Nacional de Supercómputo del Sureste de México”. This work has also been partially supported by Project 100145955-VIEP2018. NDET is grateful for the Posdoctoral Scholarship provided by CONACYT with Project No. 229741.

References

  1. 1.
    Wei, C., Cho, K., Srivastava, D.: Tensile strength of carbon nanotubes under realistic temperature and starin rate. Phys. Rev. B 67, 115407 (2003).  https://doi.org/10.1103/PhysRevB.67.115407CrossRefGoogle Scholar
  2. 2.
    Charlier, J.C., Michenaud, J.P.: Energetics of multilayered carbon tubules. Phys. Rev. Lett. 70, 1858 (1993).  https://doi.org/10.1103/PhysRevLett.70.1858CrossRefGoogle Scholar
  3. 3.
    Okazaki, T., et al.: Photoluminescence quenching in peapod-derived double-walled carbon nanotubes. Phys. Rev. B 74, 153404 (2006).  https://doi.org/10.1103/PhysRevB.74.153404CrossRefGoogle Scholar
  4. 4.
    Koyama, T., Asada, Y., Hikosaka, N., Miyata, Y., Shinohara, H., Nakamura, A.: Ultrafast exciton energy transfer between nanoscales coaxial cylinders: intertube transfer and luminescence quenching in double-walled carbon nanotubes. ACS Nano 5(7), 5881–5887 (2011).  https://doi.org/10.1021/nn201661qCrossRefGoogle Scholar
  5. 5.
    Kishi, N., Kikuchi, S., Ramesh, P., Sugai, T., Watanabe, Y., Shinohara, H.: Enhanced photoluminescence from very thin double-wall carbon nanotubes synthesized by the zeolite-CCVD method. J. Phys. Chem. B 110(49), 24816–24821 (2006).  https://doi.org/10.1021/jp062709jCrossRefGoogle Scholar
  6. 6.
    Iakoubovskii, K., Minami, N., Ueno, T., Kazaoui, S., Kataura, H.: Optical characterization of double wall carbon nanotubes: evidence for inner tube shielding. J. Phys. Chem. C 112(30), 11194–11198 (2008).  https://doi.org/10.1021/jp8018414CrossRefGoogle Scholar
  7. 7.
    Muramatsu, H., et al.: Bright photoluminescence from the inner tubes of “peapod”-derived double-walled carbon nanotubes. Small 5(23), 2678–2682 (2009).  https://doi.org/10.1002/small.200901305CrossRefGoogle Scholar
  8. 8.
    Yang, S., Parks, A.N., Saba, S.A., Ferguson, P.L., Liu, J.: Photoluminescence from inner walls in double-walled carbon nanotubes: some do, some do not. Nano Lett. 11, 4405–4410 (2011).  https://doi.org/10.1021/nl2025745CrossRefGoogle Scholar
  9. 9.
    Flahaut, E., Bacsa, R., Peigney, A., Laurent, C.: Gram-scale CCVD synthesis of double-walled carbon nanotubes. Chem. Commun. 1442–1443 (2003).  https://doi.org/10.1039/b301514a
  10. 10.
    Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648 (1993).  https://doi.org/10.1063/1.464913CrossRefGoogle Scholar
  11. 11.
  12. 12.
    Dirac, P.A.M.: Note on exchange phenomena. Proc. Camb. Phil. Soc. 26, 376 (1930).  https://doi.org/10.1017/S0305004100016108CrossRefzbMATHGoogle Scholar
  13. 13.
    Yanai, T., Tew, D.P., Handy, N.C.: A new hybrid exchange-correlation functional using the Columb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 393, 51–57 (2004).  https://doi.org/10.1016/j.cplett.2004.06.011CrossRefGoogle Scholar
  14. 14.
    Liu, J., et al.: Science 280, 1253 (1998).  https://doi.org/10.1126/science.280.5367.125CrossRefGoogle Scholar
  15. 15.
    Lee, C., Yang, W., Parr, R.G.: Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785 (1988).  https://doi.org/10.1103/PhysRevB.37.785CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • A. P. Rodríguez Victoria
    • 1
    Email author
  • Javier Martínez Juárez
    • 1
  • J. A. David Hernández de la Luz
    • 1
  • Néstor David Espinosa-Torres
    • 2
  • M. J. Robles-Águila
    • 1
  1. 1.Centro de investigaciones en Dispositivos Semiconductores (CIDS) del ICUAPBenemérita Universidad Autónoma de Puebla (BUAP)PueblaMexico
  2. 2.Instituto de Energías Renovables (IER-UNAM)TemixcoMexico

Personalised recommendations