A Scheduling Algorithm for a Platform in Real Time

  • M. Larios-GómezEmail author
  • J. Migliolo CarreraEmail author
  • M. Anzures-GarcíaEmail author
  • A. Aldama-DíazEmail author
  • G. Trinidad-GarcíaEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 948)


We propose a scheduling algorithm that was designed and implemented to obtaining the results for assigning tasks based with miss deadline among several nodes of a mobile distributed environment, taking into account the delay quality, achieving in such a way that the data of a mobile device can be transferred and located in a network. This method was intended to give a real-time scheduler, which allowed the obtaining of good results without loss of information. Also, we proposed to develop a mechanism to maintain and construct a scheduler to from the beginning.


Real-time systems Distributed environments Embedded software system High-performance computing 



The authors acknowledge to the people from the National Laboratory of Supercomputing of Southeast of Mexico that belongs to the CONACYT national laboratories, for all the technical assistance and the computational resources.


  1. 1.
    Severance, C.: Andrew S. Tanenbaum: the impact of MINIX. J. Computer 47(7), 7–8 (2014). Scholar
  2. 2.
    Corson, M.S., Macker, J., Batsell, S.G.: Architectural considerations for mobile mesh networking. In: Proceedings of IEEE Military Communications Conference, MILCOM 1996 (1996)Google Scholar
  3. 3.
    Park, V.D., Corson, M.S.: A highly adaptive distributed routing algorithm for mobile wireless networks. In: Proceedings of IEEE Sixteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Driving the Information Revolution, INFOCOM 1997 (1997)Google Scholar
  4. 4.
    Cheng, A.M.K.: Real-Time Systems: Scheduling, Analysis, and Verification. Wiley (2003)Google Scholar
  5. 5.
    Stankovic, J.A., Spuri, M., Di Natale, M., Buttazzo, G.C.: Implications of classical scheduling results for real-time systems. Computer 28(6), 16–25 (1995)CrossRefGoogle Scholar
  6. 6.
    Sengul, C., Kravets, R.: Bypass routing: an on-deman local recovery protocol for ad hoc networks. Ad Hoc Netw. 4(3), 380–397 (2006)CrossRefGoogle Scholar
  7. 7.
    Ramasubramanian, V., Haas, Z.J., Sirer, E.G.: SHARP: a hybrid adaptive routing protocol for mobile ad hoc networks. In: Proceedings of the 4th ACM International Symposium on Mobile Ad Hoc Networking & Computing, pp. 303–314. ACM (2003)Google Scholar
  8. 8.
    Gómez, J.A.H., Pérez, H.B.: Global scheduling of confined tasks based on consensus. IEEE Latin Am. Trans. 13(3), 825–834 (2015)CrossRefGoogle Scholar
  9. 9.
    Arellano-Vázquez, M., Benítez-Pérez, H., Ortega-Arjona, J.: A consensus routing algorithm for mobile distributed systems. Int. J. Distrib. Sens. Netw. 11, 510707 (2015)Google Scholar
  10. 10.
    Kshemkalyani, A.D., Singhal, M.: Distributed Computing: Principles, Algorithms, and Systems. Cambridge University Press, Cambridge (2011). Capítulo 14zbMATHGoogle Scholar
  11. 11.
    Cortés, J.: Finite-time convergent gradient flows with applications to network consensus. Automatica 42(1), 1993–2000 (2006)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Cortés, J.: Distributed algorithms for reaching consensus on general functions. Automatica 44(3), 726–737 (2008)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hui, Q., Haddad, W.M.: Distributed nonlinear control algorithms for network consensus. Automatica 44(9), 2375–2381 (2008)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hong, Y., Chen, G., Bushnell, L.: Distributed observers design for leader-following control of multi-agent networks. Automatica 44(3), 846–850 (2008)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Esquivel-Flores, O., Benítez-Pérez, H., Ortega-Arjona, J.: Issues on communication network control system based upon scheduling strategy using numerical simulations. INTECH, Open Access Publisher 2016 (2012)Google Scholar
  16. 16.
    Castillo, O., Benítez-Pérez, H.: A novel technique to enlarge the maximum allowable delay bound in sampled-data systems. In: Congreso Nacional de Control Automático 2017, 4–6 Octubre, Monterrey, Nuevo León, Mexico (2017)Google Scholar
  17. 17.
    Mendez-Monroy, P., Benitez-Perez, H.: Supervisory fuzzy control for networked Control systems. ICIC Express Lett. 3(2), 233–238 (2009)Google Scholar
  18. 18.
    Mancina, A., Faggioli, D., Lipari, G., et al.: Real-Time Syst. 43, 177 (2009). Scholar
  19. 19.
    Larios, M., et al.: Scheduling: a graphical interface for applying a process scheduling algorithm. In: Applications of Language & Knowledge Engineering. Research in Computing Science, vol. 145, pp. 119–126 (2017). ISSN 1870-4069Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Facultad de Ciencias en Sistemas Computacionales y ElectrónicosUniversidad Autónoma de TlaxcalaTlaxcalaMéxico
  2. 2.Facultad de Ciencias de la ComputaciónBenemérita Universidad Autónoma de PueblaPueblaMéxico

Personalised recommendations