Advertisement

Creep Analysis

  • Richard B. HetnarskiEmail author
  • M. Reza Eslami
Chapter
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 158)

Abstract

Under the combination of elevated temperature and mechanical loads, structural members tend to creep. Basic laws of creep are presented, and the effect of temperature changes in the constitutive law of creep is discussed. The rheological models of two important engineering concepts of stress, namely the load- and the deformation-controlled stresses, are presented. The chapter concludes with the description of numerical techniques of solutions to creep problems. The nature of pure thermal stresses as the deformation-controlled stresses is presented in the example problems. It is shown that pure thermal stresses relax as the time advances.

References

  1. 1.
    Norton FH (1929) The creep of steel at high temperatures. McGraw-Hill, New YorkGoogle Scholar
  2. 2.
    Nádai A, Davis EA (1936) The creep of metals II. Trans ASME J Appl Mech 3:A-7Google Scholar
  3. 3.
    Čanadija M (2014) Creep analysis, encyclopedia of thermal stresses. In: Hetnarski RB (ed) vol 2. Springer, Dordrecht, pp 805–814Google Scholar
  4. 4.
    Bailey RW (1936) Design aspects of creep. J Appl Mech 3:A-1Google Scholar
  5. 5.
    Soderberg CR (1936) The interpolation of creep tests for machine design. Trans ASME 58:733–743Google Scholar
  6. 6.
    Wahl AM (1954) Creep tests of rotating disks at elevated temperature and comparison with theory. J Appl Mech 225–235Google Scholar
  7. 7.
    Wahl AM (1956) Analysis of creep in rotating disks based on the Tresca criterion and associated flow rule. J Appl Mech 231–238Google Scholar
  8. 8.
    Wahl AM (1957) Stress distribution in rotating disks subjected to creep at elevated temperatures. J Appl Mech 299–305Google Scholar
  9. 9.
    Weir CD (1957) The creep of thick tubes under internal pressure. J Appl Mech 464–466Google Scholar
  10. 10.
    Finnie I, Heller WR (1959) Creep of engineering materials. McGraw-Hill, New YorkGoogle Scholar
  11. 11.
    Mendelson A (1959) A general approach to the practical solution of creep problems. Trans ASME 81:585–598Google Scholar
  12. 12.
    Rimrott FPJ (1959) Creep of thick-walled tubes under internal pressure considering large strain. Trans ASME 81:271–275Google Scholar
  13. 13.
    Taira S (1965) Creep of thick-walled cylinders under internal pressure at elevated temperature. In: The 8th Japan congress on testing materials, Kyoto, Japan, pp 53–60Google Scholar
  14. 14.
    Bhatnagar NS, Gupta SK (1969) Analysis of thick-walled orthotropic cylinder in the theory of creep. J Phys Soc Jpn 27(6)Google Scholar
  15. 15.
    Hult JAH (1966) Creep in engineering structures. Blaisdell, New YorkGoogle Scholar
  16. 16.
    Odqvist FKG (1966) Mathematical theory of creep and creep rupture. Oxford University Press, OxfordzbMATHGoogle Scholar
  17. 17.
    Rabotnov YN (1969) Creep problems in structural members. Wiley Interscience Div., Wiley, New YorkzbMATHGoogle Scholar
  18. 18.
    Smith AJ, Nicolson AM (1971) Advances in creep design. Halsted Press Div., Wiley, New YorkGoogle Scholar
  19. 19.
    Penny RK, Marriot DL (1971) Design for creep. McGraw-Hill, New YorkGoogle Scholar
  20. 20.
    Kachanov LM (1967) The theory of creep. National Lending Library, New YorkGoogle Scholar
  21. 21.
    Fridman YB (1964) Strength and deformation in nonuniform temperature field. Consultants Bureau, New YorkGoogle Scholar
  22. 22.
    Dorn JE (1954) Some fundamental experiments on high temperature creep. Mech Phys Solids 3:85–116CrossRefGoogle Scholar
  23. 23.
    Skrzypek J (1993) Plasticity and creep. In: Hetnarski RB (ed) Begell House, New York and CRC Press, Boca RatonGoogle Scholar
  24. 24.
    Garofalo F (1965) Fundamentals of creep and creep rupture in metals. MacMillan series in material science. MacMillan, New YorkGoogle Scholar
  25. 25.
    Weertman J (1955) Theory of steady state creep based on dislocation climb. J Appl Phys 26:1213CrossRefGoogle Scholar
  26. 26.
    Weertman J (1956) Creep of aluminium single crystals. J Appl Phys 27:832CrossRefGoogle Scholar
  27. 27.
    Weertman J (1960) Creep of indium, lead and some of their alloys with various metals. Trans AIME 218:207Google Scholar
  28. 28.
    Sherby OD (1958) Creep of polycrystalline alpha and beta thallium. Trans AIME 212:708Google Scholar
  29. 29.
    Lawly A, Coll JA, Cahn RW (1960) Influence of crystallographic order on creep of iron-aluminium. Trans AIME 218:166Google Scholar
  30. 30.
    Tagart WJ (1961) Activation energies for high temperature creep of polycrystalline magnesium. Acta Metall 9:614CrossRefGoogle Scholar
  31. 31.
    McLean D, Hale KF (1961) Structural processes in creep. Iron and Steel Institute, London, p 19Google Scholar
  32. 32.
    Howard EM, Barmore WC, Mote JD, Dorn JE (1963) On the thermally-activated mechanism of prismatic slip in the silver-aluminium hexagonal-intermediate phase. Trans AIME 227:1061Google Scholar
  33. 33.
    Jones RB, Harris JE (1963) Proceedings of joint international conference on creep, The Institution of Mechanical Engineers, New York, pp 1–11Google Scholar
  34. 34.
    Price AT, Holl HA, Grennough AP (1964) The surface energy and self diffusion coefficient of solid iron above \(1350\,^{\circ }{\rm C}\). Acta Metall 12:49CrossRefGoogle Scholar
  35. 35.
    Sellars CM, Quarrell AG (1961–1962) The high temperature creep of gold-nickel alloys. Inst Met 90:329Google Scholar
  36. 36.
    Kauzman W (1941) Flow of solid metals from the standpoint of the chemical rate theory. Trans AIME 143:57Google Scholar
  37. 37.
    Cottrell AH, Aytekin V (1950) The flow of zinc under constant stress. J Inst Met 77:389Google Scholar
  38. 38.
    Feltham P (1953) The plastic flow of iron and plane carbon steels above A3-point. Proc Phys Soc 66B:865CrossRefGoogle Scholar
  39. 39.
    Feltham P (1956) On the mechanism of high temperature creep in metals with special reference to polycrystalline lead. Proc Phys Soc 69B:1173CrossRefGoogle Scholar
  40. 40.
    Feltham P (1960–1961) Stress relaxation in copper and alpha-brasses at low temperatures. J Inst Met 89:210Google Scholar
  41. 41.
    Feltham P, Mikean JD (1959) Creep in face-centered cubic metals with special reference to copper. Acta Metall 7:614CrossRefGoogle Scholar
  42. 42.
    Nádai A, McVetty PG (1943) Hyperbolic sine chart for estimating working stresses of alloys at elevated temperatures. Proc ASTM 43:735Google Scholar
  43. 43.
    Sherby OD, Dorn JE (1953) Some observations on correlations between the creep behavior and the resulting structures in alpha solid solutions. Trans AIME 197:324Google Scholar
  44. 44.
    Weertman J, Breen JE (1956) Creep of tin single crystals. J Appl Phys 27:1189CrossRefGoogle Scholar
  45. 45.
    Garofalo F, Richmond O, Domis WF (1963) Joint international conference on creep. The Institution of Mechanical Engineers, London, pp 1–31Google Scholar
  46. 46.
    Sherby OD, Frenkel R, Nadeau J, Dorn JE (1954) Effect of stress on the creep rates of polycrystalline aluminium alloy under constant structure. Trans AIME 200:275Google Scholar
  47. 47.
    Feltham P (1957) On the activation energy of high temperature creep in metals. Philos Mag 2:585Google Scholar
  48. 48.
    Graham A, Walles KFA (1955) Relation between long and short time properties of a commercial alloy. J Iron Steel Inst 179Google Scholar
  49. 49.
    McVetty PG (1943) Creep of metals at elevated temperatures – the hyperbolic sine relation between stress and creep rate. Trans ASME 65Google Scholar
  50. 50.
    Marin J, Pao YH (1953) An analytical theory of the creep deformation of materials. J Appl Mech 20Google Scholar
  51. 51.
    Eslami MR, Shariyat M (1995) A technique to distinguish the primary and secondary stresses. Trans ASME J Press Vessel Technol 117:1–7CrossRefGoogle Scholar
  52. 52.
    Saint-Venant B (1870) Mémoire sur l’établissement des équations différentialles des mouvements intérieurs opérés dans les corps solides ductiles au delà des limites où l’élasticité pourrait les ramener à leur premier état. Compt Rend 70:473–480zbMATHGoogle Scholar
  53. 53.
    Lévy M (1870) Mémoire sur les équations générales des mouvements intérieurs des corps solides ductile au dela limites où l’élasticité pourrait les ramener à leur premier état. Compt Rend 70:1323–1325Google Scholar
  54. 54.
    von Mises R (1913) Mechanik der festen Körper in Plastisch deformablem Zustand. Göttinger Nachr Math Phys 582–592Google Scholar
  55. 55.
    Rozenblyum VI (1961) Axisymmetric creep of cylindrical bodies with temperature variation along the axis. PMTF, No. 6Google Scholar
  56. 56.
    Danyushevskii A, Listrinskii G (1966) Creep in a nonuniformly heated thick-walled tube subjected to internal pressure. Mech Solids 1(2):72–73Google Scholar
  57. 57.
    Eslami MR (1980) Creep linearization of non-axisymmetrically heated cylinders. AIAA J 18(7):862–864MathSciNetCrossRefGoogle Scholar
  58. 58.
    Sabbaghian M, Eslami MR (1974) Creep relaxation of axisymmetric thermal stresses in thick-walled cylindrical vessels. ASME Paper No. 74-PVP-9Google Scholar
  59. 59.
    Sabbaghian M, Eslami MR (1974) Creep relaxation of nonaxisymmetric thermal stresses in thick-walled cylinders. AIAA J 12:1652–1658CrossRefGoogle Scholar
  60. 60.
    Eslami MR (1978) Creep relaxation of a beam of general cross section subjected to mechanical and thermal loads. Trans ASME J Mech Design 100:626–629CrossRefGoogle Scholar
  61. 61.
    Eslami MR, Tafreshi A (1989) Thermoelastic-plastic analysis of beams. In: Proceedings of the international conference on constitutive law in engineering materials, Chongqing, China, 10–13 August 1989Google Scholar
  62. 62.
    Eslami MR, Yazdan MR, Salimi E (1989) Elastic-plastic-creep analysis of thick cylinders and spheres of strain hardening materials. In: Proceedings of the international congress for applied mechanics, Beijing, China, 21–25 August 1989Google Scholar
  63. 63.
    Eslami MR, Loghman A (1989) Thermoelastic-plastic-creep analysis of thick cylindrical pressure vessels of strain hardening materials. In: Proceedings of the ASME-PVP conference, Hawaii, 23–27 July 1989Google Scholar
  64. 64.
    Mahbadi H, Eslami MR (2014) Effect of creep on cyclic loading of spherical vessels based on the kinematical hardening models. In: Hetnarski RB (ed) Encyclopedia of thermal stresses, vol 3. Springer, Dordrecht, pp 1109–1117CrossRefGoogle Scholar
  65. 65.
    Mahbadi H, Eslami MR (2014) Effect of creep on thermal cyclic loading of beams based on the kinematical hardening models. In: Hetnarski RB (ed) Encyclopedia of thermal stresses, vol 3. Springer, Dordrecht, pp 1117–1124CrossRefGoogle Scholar
  66. 66.
    Mahbadi H, Eslami MR (2014) Effect of creep on thermal cyclic loading of rotating disks. In: Hetnarski RB (ed) Encyclopedia of thermal stresses, vol 3. Springer, Dordrecht, pp 1124–1130CrossRefGoogle Scholar
  67. 67.
    Mahbadi H, Eslami MR (2014) Effect of creep on thermal cyclic loading of thick cylindrical vessels based on the kinematical hardening models. In: Hetnarski RB (ed) Encyclopedia of thermal stresses, vol 3. Springer, Dordrecht, pp 1130–1140CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.NaplesUSA
  2. 2.Department of Mechanical EngineeringAmirkabir University of TechnologyTehranIran

Personalised recommendations