REWAS 2019 pp 437-445 | Cite as

Waste Tire Rubber Powders Based Composite Materials

  • Carlos F. Revelo
  • Mauricio Correa
  • Claudio Aguilar
  • Henry A. ColoradoEmail author
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)


This investigation shows results for use of waste tire rubber powdered materials fabricated in composites by using polyurethane resin as a binder material. With this powders, processed at industrial scale for a recycling local company, rubber-based tiles were produced for several applications. The use of these materials is a solution that gives a valorization to the tires after use in many countries giving relief for an increasing problem worldwide with the tire use. Several concentrations and particle size distributions were investigated and tested. Tension and density tests were conducted in order to evaluate the flexible tiles for diverse applications. Scanning electron microscopy, Fourier-transform infrared spectroscopy, thermogravimetric analysis, and dynamic mechanical analyzer techniques were used to evaluate the microstructure of the samples. Weibull distribution analysis has been also included in order to analyze the variability of composite samples and thus characterize the manufacturing process at the industrial scale.


Waste tire rubber Composites Polyurethane Mechanical characterization Rubber tiles 



The authors wish to thank the engineer Juan C. Salazar from Prismacaucho S.A.S. for his support and useful suggestions in this investigation.


  1. 1.
    Yilmaz A, Degirmenci N (2009) Possibility of using waste tire rubber and fly ash with Portland cement as construction materials. Waste Manag 29(5):1541–1546CrossRefGoogle Scholar
  2. 2.
    Uruburu Á, Ponce-Cueto E, Cobo-Benita JR, Ordieres-Meré J (2013) The new challenges of end-of-life tyres management systems: a Spanish case study. Waste Manag 33(3):679–688CrossRefGoogle Scholar
  3. 3.
    Sienkiewicz M, Kucinska-Lipka J, Janik H, Balas A (2012) Progress in used tyres management in the European Union: a review. Waste Manag 32(10):1742–1751CrossRefGoogle Scholar
  4. 4.
    Dehghani M et al (2017) The effects of air pollutants on the mortality rate of lung cancer and leukemia 15Google Scholar
  5. 5.
    Leung DYC, Wang CL (1998) Kinetic study of scrap tyre pyrolysis and combustion. J Anal Appl Pyrolysis 45(2):153–169CrossRefGoogle Scholar
  6. 6.
    Di Mundo R, Petrella A, Notarnicola M (2018) Surface and bulk hydrophobic cement composites by tyre rubber addition. Constr Build Mater 172:176–184CrossRefGoogle Scholar
  7. 7.
    Lo Presti D (2013) Recycled tyre rubber modified bitumens for road asphalt mixtures: a literature review. Constr Build Mater 49:863–881CrossRefGoogle Scholar
  8. 8.
    Thomas BS, Gupta RC, John Panicker V (2015) Experimental and modelling studies on high strength concrete containing waste tire rubber. Sustain Cities Soc 19:68–73CrossRefGoogle Scholar
  9. 9.
    Popovici A et al (2015) Modern mortars with electronic waste scraps (glass and plastic). Mater Plast 52(4):588–592Google Scholar
  10. 10.
    Zhang SL, Zhang ZX, Pal K, Xin ZX, Suh J, Kim JK (2010) Prediction of mechanical properties of waste polypropylene/waste ground rubber tire powder blends using artificial neural networks. Mater Des 31(8):3624–3629CrossRefGoogle Scholar
  11. 11.
    Xu M, Li J (2012) Effect of adding rubber powder to poplar particles on composite properties. Bioresour Technol 118:56–60CrossRefGoogle Scholar
  12. 12.
    Piszczyk Ł, Hejna A, Formela K, Danowska M, Strankowski M (2015) Effect of ground tire rubber on structural, mechanical and thermal properties of flexible polyurethane foams. Iran Polym J 24(1):75–84CrossRefGoogle Scholar
  13. 13.
    Colorado HA, Singh D (2014) High-sodium waste streams stabilized with inorganic acid–base phosphate ceramics fabricated at room temperature. Ceram Int, Part B 40(7):10621–10631CrossRefGoogle Scholar
  14. 14.
    Colorado HA, Colorado SA (2016) Portland cement with battery waste contents. In: REWAS 2016. Springer, pp 57–63Google Scholar
  15. 15.
    Teh E-J, Leong YK, Liu Y, Fourie AB, Fahey M (2009) Differences in the rheology and surface chemistry of kaolin clay slurries: the source of the variations. Chem Eng Sci 64(17):3817–3825CrossRefGoogle Scholar
  16. 16.
    Zhang X et al (2014) Vinyl ester resin: rheological behaviors, curing kinetics, thermomechanical, and tensile properties. AIChE J 60(1):266–274CrossRefGoogle Scholar
  17. 17.
    Colorado HA, Yuan W, Guo Z, Juanri J, Yang J-M (2014) Poly-dicyclopentadiene-wollastonite composites toward structural applications. J Compos Mater 48(16):2023–2031CrossRefGoogle Scholar
  18. 18.
    Neves Monteiro S et al (2018) Fique fabric: a promising reinforcement for polymer composites. Polymers (Basel) 10(3):246CrossRefGoogle Scholar
  19. 19.
    Teles MCA, Altoé GR, Amoy Netto P, Colorado H, Margem FM, Monteiro SN (2015) Fique fiber tensile elastic modulus dependence with diameter using the Weibull statistical analysis. Mater Res 18:193–199CrossRefGoogle Scholar
  20. 20.
    Colorado HA, Nino JC, Restrepo O (2018) Applications and opportunities of nanomaterials in construction and infrastructure. In: TMS annual meeting & exhibition, pp 437–452Google Scholar
  21. 21.
    Wang Z et al (2012) Effective functionalization of carbon nanotubes for bisphenol F epoxy matrix composites. Mater Res 15(4):510–516CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Carlos F. Revelo
    • 1
  • Mauricio Correa
    • 2
  • Claudio Aguilar
    • 3
  • Henry A. Colorado
    • 1
    • 4
    Email author
  1. 1.CCComposites LaboratoryUniversidad de Antioquia UdeAMedellínColombia
  2. 2.Grupo de Investigación En Ingeniería Y Gestión AmbientalUniversidad de Antioquia UdeAMedellínColombia
  3. 3.Metallurgical and Materials DepartmentUniversidad Técnica Federico Santa MaríaValparaísoChile
  4. 4.Facultad de IngenieriaUniversidad de AntioquiaMedellínColombia

Personalised recommendations