Advertisement

REWAS 2019 pp 37-43 | Cite as

Sustainable Nitrogen-Based Fertilizer Production from Sun, Air, and Water

  • Dorottya Guban
  • Martin Roeb
  • Josua Vieten
  • Hanna Krüger
  • Stephan PetersenEmail author
  • Klaus Hack
  • Tatjana Jantzen
  • Martin Habermehl
  • Markus Hufschmidt
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

In the DüSol research project, the technology of sustainable fertilizer production is developed and demonstrated on the basis of solar thermal redox cycle processes. The focus is on the unexplored step of solar thermal air separation for the production of nitrogen. For this reaction, corresponding materials are identified by thermodynamic calculations and qualified and optimized on a laboratory scale. In combination with material development, a prototype reactor is designed based on computer-aided calculation tools. In a test campaign in the new high-performance simulator for concentrated solar radiation SynLight at the Technology Center in Jülich, this reactor is being tested and the solar thermal nitrogen production demonstrated. These experimental works go hand in hand with the overall process simulation and optimization, which lead to a comprehensive economic analysis.

Keywords

Fertilizer production Thermochemistry Air separation Solar reactor Concentrated sunlight 

References

  1. 1.
    U.S. Geological Survey (2014) Mineral commodity summaries, pp 112–113Google Scholar
  2. 2.
    Säck J-P, Breuer S, Cotelli P, Houaijia A, Lange M, Wullenkord M, Spenke C, Roeb M, Sattler C (2016) High temperature hydrogen production: design of a 750 KW demonstration plant for a two step thermochemical cycle. Sol Energy 135:232–241CrossRefGoogle Scholar
  3. 3.
    Goldschmidt VM (1923) Naturwissenschaften 477–485Google Scholar
  4. 4.
    Vieten J, Bulfin B, Call F, Lange M, Schmücker M, Francke A, Roeb M, Sattler C (2016) Perovskite oxides for application in thermochemical air separation and oxygen storage. J Mater Chem A 4(36):13652–13659CrossRefGoogle Scholar
  5. 5.
    Tescari S, Agrafiotis C, Breuer S, de Oliveira L, Neises-von Puttkamer M, Roeb M, Sattler C (2014) Thermochemical solar energy storage via redox oxides: materials and reactor/heat exchanger concepts. Energy Procedia 49:1034–1043CrossRefGoogle Scholar
  6. 6.
    Petersen S, Hack K (2007) The thermochemistry library ChemApp and its applications. Int J Mat Res 98(10):935–945.  https://doi.org/10.3139/146.101551CrossRefGoogle Scholar
  7. 7.
    Petersen S, Hack K, Monheim P, Pickartz U (2007) SimuSage—the component library for rapid process modeling and its applications. Int J Mat Res 98(10):946–953.  https://doi.org/10.3139/146.101552CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Dorottya Guban
    • 1
  • Martin Roeb
    • 1
  • Josua Vieten
    • 1
  • Hanna Krüger
    • 1
  • Stephan Petersen
    • 2
    Email author
  • Klaus Hack
    • 2
  • Tatjana Jantzen
    • 2
  • Martin Habermehl
    • 3
  • Markus Hufschmidt
    • 3
  1. 1.German Aerospace Center (DLR)CologneGermany
  2. 2.GTT-TechnologiesHerzogenrathGermany
  3. 3.aixprocessAachenGermany

Personalised recommendations