Advertisement

REWAS 2019 pp 337-354 | Cite as

Toward a Solid Waste Economy in Colombia: An Analysis with Respect to Other Leading Economies and Latin America

  • José J. Rúa-Restrepo
  • Gloria I. Echeverri
  • Henry A. ColoradoEmail author
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

This investigation aims to analyze critically the historical situation, current, and potential trends of the main solid wastes in Colombia, not only from a detailed and internal point of view, but also in the Latin American countries. To give a better context and understanding of the issue, some data is also studied in comparison with some leading economies worldwide. Most countries worldwide including Latin America still work with the linear economy model, where the wastes are not intended to be minimized, re-used, or considered in the initial design as is in the circular economy. To implement the circular economy, one of the major challenges in many countries is the quantification and thus reliable and verifiable data for waste, therefore being one of the main goals of the current investigation in Colombia, particularly focused in the main solid wastes. In addition, important clues have been found in relation with the waste, economy, population, gross internal product, regulation, and society practices. Results from the current investigation can be used for similar economies and for countries with comparative waste numbers to Colombia.

Keywords

Sustainable economy Circular economy Solid waste Colombia Latin America 

References

  1. 1.
    Hoornweg D, Bhada-Tata P (2012) What a waste: a global review of solid waste managementGoogle Scholar
  2. 2.
    Koroneos CJ, Nanaki EA (2012) Integrated solid waste management and energy production-a life cycle assessment approach: the case study of the city of Thessaloniki. J Clean Prod 27:141–150CrossRefGoogle Scholar
  3. 3.
    Andersen FM, Larsen H, Skovgaard M et al (2007) A European model for waste and material flows. Resour Conserv Recycl 49:421–435CrossRefGoogle Scholar
  4. 4.
    Alfsen K, Bye T, Holmoy E (1996) An applied general equilibrium model for energy and enviromental analysesGoogle Scholar
  5. 5.
    Bruvoll A, Ibenholt K (1997) Future waste generation: forecasts on the basis of a macroeconomic model. Resour Conserv Recycl 19:137–149.  https://doi.org/10.1016/S0921-3449(96)01189-5CrossRefGoogle Scholar
  6. 6.
    Berglund C, Söderholm P (2003) An econometric analysis of global waste paper recovery and utilization. Environ Resour Econ 26:429–456.  https://doi.org/10.1023/B:EARE.0000003595.60196.a9CrossRefGoogle Scholar
  7. 7.
    Hamer G (2003) Solid waste treatment and disposal: effects on public health and environmental safety. J Biotechnol Adv 22:71–79CrossRefGoogle Scholar
  8. 8.
    Tonglet M, Phillips PS, Bates MP (2004) Determining the drivers for householder pro-environmental behaviour: waste minimisation compared to recycling. Resour Conserv Recycl 42:27–48CrossRefGoogle Scholar
  9. 9.
    Schandl H, Schaffartzik A (2015) Material flow analysis. In: International encyclopedia of the social & behavioral sciences, 2nd edn. pp 760–764CrossRefGoogle Scholar
  10. 10.
    Adams R, Jeanrenaud S, Bessant J et al (2016) A review on circular economy: the expected transition to a balanced interplay of environmental and economic systems. J Clean Prod 8:1–17.  https://doi.org/10.1016/j.jclepro.2015.12.042CrossRefGoogle Scholar
  11. 11.
    Ness D (2008) Sustainable urban infrastruture in China: towards a factor 10 improvement in resource productivity through integrated infrastructure systems. Int J Sustain Dev World Ecol 15: 288–301.  https://doi.org/10.3843/SusDev.15.4:2a
  12. 12.
    Mazzantini U (2014) Rivoluzione a Davos, il big business mondiale vuole l’economia circolareGoogle Scholar
  13. 13.
    Lett LA (2014) Las amenazas globales, el reciclaje de residuos y el concepto de economía circular. Rev Argent Microbiol 46:1–2Google Scholar
  14. 14.
    Park JY, Chertow MR (2014) Establishing and testing the reuse potential indicator for managing wastes as resources. J Environ Manage 137:45–53CrossRefGoogle Scholar
  15. 15.
    Geng Y, Fu J, Sarkis J, Xue B (2012) Towards a national circular economy indicator system in China: an evaluation and critical analysis. J Clean Prod 23:216–224.  https://doi.org/10.1016/j.jclepro.2011.07.005CrossRefGoogle Scholar
  16. 16.
    Su B, Heshmati A, Geng Y, Yu X (2013) A review of the circular economy in China: moving from rhetoric to implementation. J Clean Prod 42:215–227CrossRefGoogle Scholar
  17. 17.
    Zhijun F, Nailing Y (2007) Putting a circular economy into practice in China. Sustain Sci 2:95–101CrossRefGoogle Scholar
  18. 18.
    The Ellen MacArthur Foundation (2012) Towards a circular economy—economic and business rationale for an accelerated transition. Greener Manag Int 97. 2012-04-03Google Scholar
  19. 19.
    Yuan Z, Bi J, Moriguichi Y (2006) The circular economy: a new development strategy in China. J Ind Ecol 10:4–8CrossRefGoogle Scholar
  20. 20.
    Group OW, Goals SD, Group OW, et al (2015) Sustainable development goals and targets. United NationsGoogle Scholar
  21. 21.
    Porter RC (2005) The economics of waste. In: resources policy. pp 141–142Google Scholar
  22. 22.
    Lu Y, Nakicenovic N, Visbeck M et al (2015) Five priorities for the UN sustainable development goals. Nature 520:432–433CrossRefGoogle Scholar
  23. 23.
    Publishing O (2008) OECD environmental outlook to 2030. Organisation for Economic Co-operation and DevelopmentGoogle Scholar
  24. 24.
    Kalpakjian S, Schmid SR (2014) Manufacturing engineering and technology. Manuf Eng TechnolGoogle Scholar
  25. 25.
    Harper CA (2006) Handbook of plastics technologies. IEEE Electr Insul Mag 22:53Google Scholar
  26. 26.
    PlasticsEurope (2007) The compelling facts about plastics: an analysis of plastics production, demand and recovery for 2005 in EuropeGoogle Scholar
  27. 27.
    Warren LM, Burns R (1988) Processors make a go of mixed-waste recycling. Plast Technol 34:41–42Google Scholar
  28. 28.
    Ellen MacArthur Foundation (2016) The New Plastics Economy: Rethinking the future of plastics. Ellen MacArthur Found 120.  https://doi.org/10.1103/Physrevb.74.035409
  29. 29.
    Vélez SLP, Vélez AR (2017) Recycling alternatives to treating plastic waste, environmental, social and economic effects: a literature review. J Solid Waste Technol Manag 43:122–136CrossRefGoogle Scholar
  30. 30.
    Tokai A, Furuichi T (2000) Evaluation of recycling policies for PET bottles based on multiattribute utility indices. J Mater Cycles Waste Manag 2:70–79.  https://doi.org/10.1007/s10163-999-0021-6CrossRefGoogle Scholar
  31. 31.
    ASTM D (2003) Standard test method for determination of composition of unprocessed municipal solid waste. ASTM Int 5231–5292Google Scholar
  32. 32.
    Manual T (2009) Developing integrated solid Waste Management Plan. In: Prepared by United Nations Environ ProgramGoogle Scholar
  33. 33.
    Kim H (2004) Hodrick-Prescott Filter. Business 2004Google Scholar
  34. 34.
    Ahumada H, Garegnani ML (1999) Hodrick-Prescott filter in practice. n IV Jornadas Econ Monet e Int (La Plata, 1999). 10.1.1.121.3365Google Scholar
  35. 35.
    Harvey A, Trimbur T (2008) Trend estimation and the Hodrick-Prescott filter. J Japan Stat Soc 38: 41–49.  https://doi.org/10.14490/jjss.38.41CrossRefGoogle Scholar
  36. 36.
    ISWA; University of Leeds; Sweepnet; Wtert; Swapi (2013) Atlas D-waste. In: Waste atlas. http://www.atlas.d-waste.com/
  37. 37.
    Nielsen RW (2016) Mathematical analysis of historical income per capita distributions. arXiv: 1603.01685
  38. 38.
    Anon (2004) Wood-plastic compounds: when plastic touches wood. Kunststoffe-Plast Eur 94: 38–39Google Scholar
  39. 39.
    Neale CW, Hilyard NC, Barber P (1983) Observations on the economics of recycling industrial scrap plastic in new products. Conserv Recycl 6:91–105CrossRefGoogle Scholar
  40. 40.
    Phillips PCB, Jin S (2015) Business cycles, trend elimination, and the HP filterGoogle Scholar
  41. 41.
    Congreso de Colombia (1993) Ley 99. Congr Colomb 44.  https://doi.org/10.1017/CBO9781107415324.004
  42. 42.
    COLOMBIA.CONGRESO DE LA REPÚBLICA. Ley 142 de 1994. Por la cual se establece el régimen de los servicios públicos domiciliarios y se dictan otras disposiciones. (1994) Ley 142 de 1994Google Scholar
  43. 43.
    Presidencia de la República de Colombia (1996) Decreto 605 de 1996Google Scholar
  44. 44.
    ICONTEC: Instituto Colombiano de Normas Tecnicas y CertificacionGoogle Scholar
  45. 45.
    Sistema de Información Ambiente de Colombia (2017) Postconsumo - IDEAM. In: Minist. Ambient. y Desarro. Sosten. Colomb. http://www.siac.gov.co/residuospostconsumo

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • José J. Rúa-Restrepo
    • 1
    • 2
  • Gloria I. Echeverri
    • 2
  • Henry A. Colorado
    • 1
    • 3
    Email author
  1. 1.CCComposites LaboratoryUniversidad de Antioquia UdeAMedellínColombia
  2. 2.Grupo Pluriverso, Universidad Autónoma Latinoamericana UnaulaMedellínColombia
  3. 3.Universidad de Antioquia, Facultad de IngenieríaMedellínColombia

Personalised recommendations