Advertisement

Optimizing Support Vector Machine and Ensemble Trees Using Taguchi Method for Road Extraction from LiDAR Data

  • Biswajeet PradhanEmail author
  • Maher Ibrahim Sameen
Chapter
Part of the Advances in Science, Technology & Innovation book series (ASTI)

Abstract

Automatic road network extraction, which provides initial data for several applications that require realistic geospatial simulations, is one of the most essential tasks in remote sensing.

References

  1. Abdulwahid, W. M., & Pradhan, B. (2017). Landslide vulnerability and risk assessment for multi-hazard scenarios using airborne laser scanning data (LiDAR). Landslides, 14(3), 1057–1076.  https://doi.org/10.1007/s10346-016-0744-0.CrossRefGoogle Scholar
  2. Breiman, L. (1996). Bagging predictors. Machine learning, 24(2), 123–140.zbMATHGoogle Scholar
  3. Brennan, R., & Webster, T. (2006). Object-oriented land cover classification of lidar-derived surfaces. Canadian Journal of Remote Sensing, 32(2), 162–172.CrossRefGoogle Scholar
  4. Cánovas-García, F., & Alonso-Sarría, F. (2015). A local approach to optimize the scale parameter in multiresolution segmentation for multispectral imagery. Geocarto International, 30(8), 937–961.  https://doi.org/10.1080/10106049.2015.1004131.CrossRefGoogle Scholar
  5. Das, S., Mirnalinee, T. T., & Varghese, K. (2011). Use of salient features for the design of a multistage framework to extract roads from high-resolution multispectral satellite images. IEEE Transactions on Geoscience and Remote Sensing, 49(10), 3906–3931.  https://doi.org/10.1109/tgrs.2011.2136381.CrossRefGoogle Scholar
  6. Driss, M., Benabdeli, K., Saint-Gerand, T., & Hamadouche, M. A. (2014). Traffic safety prediction model for identifying spatial degrees of exposure to the risk of road accidents based on fuzzy logic approach. Geocarto International, 30(3), 243–257.  https://doi.org/10.1080/10106049.2014.883554.CrossRefGoogle Scholar
  7. Estoque, R. C., Murayama, Y., & Akiyama, C. M. (2015). Pixel-based and object-based classifications using high-and medium-spatial-resolution imageries in the urban and suburban landscapes. Geocarto International, 30(10), 1113–1129.CrossRefGoogle Scholar
  8. Evans, J. S., & Hudak, A. T. (2007). A multiscale curvature algorithm for classifying discrete return lidar in forested environments. IEEE Transactions on Geoscience and Remote Sensing, 45(4), 1029–1038.CrossRefGoogle Scholar
  9. Fanos, A. M., Pradhan, B., Mansor, S., Yusoff, Z. M., & Abdullah, A. F. B. (2018). A hybrid model using machine learning methods and GIS for potential rockfall source identification from airborne laser scanning data. Landslides, 1–18 (online first available).  https://doi.org/10.1007/s10346-018-0990-4.
  10. Fanos, A. M., & Pradhan, B. (2018). Laser scanning systems and techniques in rockfall source identification and risk assessment: a critical review. Earth Systems and Environment (Article online first available).  https://doi.org/10.1007/s41748-018-0046-x.
  11. Fanos, A. M., Pradhan, B., Aziz, A. A., Jebur, M. N., & Park, H. -J. (2016). Assessment of multi-scenario rockfall hazard based on mechanical parameters using high-resolution airborne laser scanning data and GIS in a tropical area. Environmental Earth Sciences, 75, 1129. http://dx.doi.org/1007/s12665-016-5936-3.
  12. Fanos, A. M., & Pradhan, B. (2016). Multi-scenario rockfall hazard assessment using LiDAR Data and GIS. Geotechnical and Geological Engineering, 34(5), 1375–1393.  https://doi.org/10.1007/s10706-016-0049-z.CrossRefGoogle Scholar
  13. Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1), 119–139.MathSciNetCrossRefGoogle Scholar
  14. Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: A statistical view of boosting (with discussion and a rejoinder by the authors). The Annals of Statistics, 28(2), 337–407.MathSciNetCrossRefGoogle Scholar
  15. Ghasemloo, N., Reza Mobasheri, M., Madanchi Zare, A., & Memar Eftekhari, M. (2013). Road and tunnel extraction from SPOT satellite images using neural networks. Journal of Geographic Information System, 05(01), 69–74.  https://doi.org/10.4236/jgis.2013.51007.CrossRefGoogle Scholar
  16. Gong, L., Zhang, Y., Li, Z., & Bao, Q. (2010). Automated road extraction from LiDAR data based on intensity and aerial photo. In 2010 3rd International Congress on Paper presented at the Image and Signal Processing (CISP).Google Scholar
  17. Han, J., Kim, D., Lee, M., & Sunwoo, M. (2014). Road boundary detection and tracking for structured and unstructured roads using a 2D lidar sensor. International Journal of Automotive Technology, 15(4), 611–623.CrossRefGoogle Scholar
  18. Hong, H., Chen, W., Xu, C., Youssef, A. M., Pradhan, B., & Tien Bui, D. (2016). Rainfall-induced landslide susceptibility assessment at the Chongren area (China) using frequency ratio, certainty factor, and index of entropy. Geocarto International, 1–16.Google Scholar
  19. Huang, C.-L., & Dun, J.-F. (2008). A distributed PSO–SVM hybrid system with feature selection and parameter optimization. Applied Soft Computing, 8(4), 1381–1391.CrossRefGoogle Scholar
  20. Idrees, M. O., & Pradhan, B. (2018). Geostructural stability assessment of cave using rock surface discontinuity extracted from terrestrial laser scanning point cloud. Journal of Rock Mechanics and Geotechnical Engineering, 10(3), 534–544.  https://doi.org/10.1016/j.jrmge.2017.11.011.CrossRefGoogle Scholar
  21. Idrees, M. O., Pradhan, B., Buchroithner, M. F., Shafri, H. Z. M., & Bejo, S. K. (2016). Assessing the transferability of a hybrid Taguchi-objective function method to optimize image segmentation for detecting and counting cave roosting birds using terrestrial laser scanning data. Journal of Applied Remote Sensing, 10(3), 035023. http://dx.doi.org/10.1117/1.JRS.10.035023.
  22. Idrees, M. O., & Pradhan, B. (2016). A decade of modern cave surveying with terrestrial laser scanning: A review of sensors, method and application development. International Journal of Speleology, 45(1), 71–88.  https://doi.org/10.5038/1827-806X.45.1.1923Pradhan.CrossRefGoogle Scholar
  23. Im, J., Jensen, J. R., & Hodgson, M. E. (2008). Object-based land cover classification using high-posting-density LiDAR data. GIScience & Remote Sensing, 45(2), 209–228.CrossRefGoogle Scholar
  24. Jebur, M. N., Pradhan, B., & Tehrany, M. S. (2015). Manifestation of LiDAR derived parameters in spatial prediction of landslides using a novel ensemble evidential belief functions and support vector machine models in GIS. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(2), 674–689.  https://doi.org/10.1109/JSTARS.2014.2341276.CrossRefGoogle Scholar
  25. Jebur, M. N., Pradhan, B., & Tehrany, M. S. (2014). Optimization of landslide conditioning factors using very high-resolution airborne laser (LiDAR) scanning data at catchment scale. Remote Sensing of Environment, 152, 150–165.  https://doi.org/10.1016/j.rse.2014.05.013.CrossRefGoogle Scholar
  26. Karlaftis, M. G., & Golias, I. (2002). Effects of road geometry and traffic volumes on rural roadway accident rates. Accident Analysis and Prevention, 34(3), 357–365.CrossRefGoogle Scholar
  27. Kim, J. G., Han, D. Y., Yu, K. Y., Kim, Y. I., & Rhee, S. M. (2006). Efficient extraction of road information for car navigation applications using road pavement markings obtained from aerial images. Canadian Journal of Civil Engineering, 33(10), 1320–1331.CrossRefGoogle Scholar
  28. Matkan, A. A., Hajeb, M., & Sadeghian, S. (2014). Road Extraction from Lidar Data Using Support Vector Machine Classification. Photogrammetric Engineering & Remote Sensing, 80(5), 409–422.  https://doi.org/10.14358/pers.80.5.409.CrossRefGoogle Scholar
  29. Melgani, F., & Bruzzone, L. (2004). Classification of hyperspectral remote sensing images with support vector machines. IEEE Transactions on Geoscience and Remote Sensing, 42(8), 1778–1790.CrossRefGoogle Scholar
  30. Mezaal, M. R., & Pradhan, B. (2018). An improved algorithm for identifying shallow and deep-seated landslides in dense tropical forest from airborne laser scanning data. CATENA, 167, 147–159.  https://doi.org/10.1016/j.catena.2018.04.038.CrossRefGoogle Scholar
  31. Mezaal, M. R., Pradhan, B., & Rizeei, H. M. (2018). Improving landslide detection from airborne laser scanning data using optimized Dempster-Shafer. Remote Sensing, 10(7), 1029.  https://doi.org/10.3390/rs10071029.CrossRefGoogle Scholar
  32. Mezaal, M. R., & Pradhan, B. (2017). Data mining-aided automatic landslide detection using airborne laser scanning data in densely forested tropical areas. Korean Journal of Remote Sensing, 34(1), 45–74.  https://doi.org/10.7780/kjrs.2018.34.1.4.CrossRefGoogle Scholar
  33. Mezaal, M. R., Pradhan, B., Sameen, M. I., Shafri, H. Z. M., & Yusoff, Z. M. (2017a). Optimized neural architecture for automatic landslide detection from high-resolution airborne laser scanning data. Applied Sciences, 7(7), 730.CrossRefGoogle Scholar
  34. Mezaal, M. R., Pradhan, B., Shafri, H. Z. M., & Yusoff, Z. M. (2017b). Automatic landslide detection using Dempster-Shafer theory from LiDAR-derived data and orthophotos. Geomatics, Natural Hazards and Risk, 8(2), 1935–1954.  https://doi.org/10.1080/19475705.2017.1401013.CrossRefGoogle Scholar
  35. Oommen, T., Misra, D., Twarakavi, N. K. C., Prakash, A., Sahoo, B., & Bandopadhyay, S. (2008). An objective analysis of support vector machine based classification for remote sensing. Mathematical Geosciences, 40(4), 409–424.  https://doi.org/10.1007/s11004-008-9156-6.CrossRefzbMATHGoogle Scholar
  36. Platt, J. C. (1999). Using analytic QP and sparseness to speed training of support vector machines. In Advances in neural information processing systems (pp. 557–563).Google Scholar
  37. Pradhan, B. (2010). Remote sensing and GIS-based landslide hazard analysis and cross-validation using multivariate logistic regression model on three test areas in Malaysia. Advances in Space Research, 45(10), 1244–1256.CrossRefGoogle Scholar
  38. Pradhan, B., Jebur, M. N., Shafri, H. Z. M., & Tehrany, M. S. (2015). Data fusion technique using wavelet transform and taguchi methods for automatic landslide detection from airborne laser scanning data and quickbird satellite imagery. IEEE Transactions on Geoscience and Remote Sensing.Google Scholar
  39. Rahmati, O., Pourghasemi, H. R., & Zeinivand, H. (2016). Flood susceptibility mapping using frequency ratio and weights-of-evidence models in the Golastan Province, Iran. Geocarto International, 31(1), 42–70.CrossRefGoogle Scholar
  40. Reinoso, J., Ariza-López, F., Barrera, D., Gómez-Blanco, A., & Romero-Zaliz, R. (2015). A fitted B-spline method to derive a representative 3D axis from a set of multiple road traces. Geocarto International, 1–13.Google Scholar
  41. Rokach, L. (2009). Ensemble-based classifiers. Artificial Intelligence Review, 33(1–2), 1–39.  https://doi.org/10.1007/s10462-009-9124-7.MathSciNetCrossRefGoogle Scholar
  42. Saeidi, V., Pradhan, B., Idrees, M. O., & Latif, Z. A. (2014). Fusion of airborne LiDAR with multispectral SPOT 5 image for enhancement of feature extraction using dempster-shafer theory. IEEE Transactions on Geoscience and Remote Sensing, 52(10), 6017–6025. https://dx.doi.org/10.1109/TGRS.2013.2294398.
  43. Samadzadegan, F., & Bigdeli, B. (2009). Combining multiple classifiers for automatic road extraction from lidar data.Google Scholar
  44. Seiffert, C., Khoshgoftaar, T. M., Van Hulse, J., & Napolitano, A. (2008). RUSBoost: Improving classification performance when training data is skewed. In 19th International Conference on Paper presented at the Pattern Recognition, ICPR 2008.Google Scholar
  45. Soliman, O. S., & Mahmoud, A. S. (2012). A classification system for remote sensing satellite images using support vector machine with non-linear kernel functions. In 2012 8th International Conference on Paper presented at the Informatics and Systems (INFOS).Google Scholar
  46. Tan, K., Hu, J., Li, J., & Du, P. (2015). A novel semi-supervised hyperspectral image classification approach based on spatial neighborhood information and classifier combination. ISPRS Journal of Photogrammetry and Remote Sensing, 105, 19–29.  https://doi.org/10.1016/j.isprsjprs.2015.03.006.CrossRefGoogle Scholar
  47. Vapnik, V. (2013). The nature of statistical learning theory. Springer Science & Business Media.Google Scholar
  48. Wang, G., Zhang, Y., Li, J., & Song, P. (2011). 3D road information extraction from LIDAR data fused with aerial-images. In 2011 IEEE International Conference on Paper presented at the Spatial Data Mining and Geographical Knowledge Services (ICSDM).Google Scholar
  49. Xu, C., Wang, W., Liu, P., Guo, R., & Li, Z. (2014). Using the Bayesian updating approach to improve the spatial and temporal transferability of real-time crash risk prediction models. Transportation Research Part C: Emerging Technologies, 38, 167–176.  https://doi.org/10.1016/j.trc.2013.11.020.CrossRefGoogle Scholar
  50. Yao, W., & Han, M. (2011). Remote sensing image classification with parameter optimized support vector machine based on evolutionary computation. In 2011 Fourth International Workshop on Paper presented at the Advanced Computational Intelligence (IWACI).Google Scholar
  51. Youssef, A. M., Pradhan, B., & Hassan, A. M. (2011). Flash flood risk estimation along the St. Katherine road, southern Sinai, Egypt using GIS based morphometry and satellite imagery. Environmental Earth Sciences, 62(3), 611–623.Google Scholar
  52. Yusof, N. M., Pradhan, B., Shafri, H. Z. M., Jebur, M. N., & Yusoff, Z. (2016). Spatial landslide hazard assessment along the Jelapang Corridor of the North-South Expressway in Malaysia using high resolution airborne LiDAR data. Arabian Journal of Geosciences, 8(1), 9789–9800.  https://doi.org/10.1007/s12517-015-1937-x.CrossRefGoogle Scholar
  53. Zhan, Y., & Shen, D. (2005). Design efficient support vector machine for fast classification. Pattern Recognition, 38(1), 157–161.CrossRefGoogle Scholar
  54. Zhang, Y., & Yan, L. (2007). Road surface modeling and representation from point cloud based on fuzzy clustering. Geo-spatial Information Science, 10(4), 276–281.  https://doi.org/10.1007/s11806-007-0106-0.MathSciNetCrossRefGoogle Scholar
  55. Zhao, J., You, S., & Huang, J. (2011). Rapid extraction and updating of road network from airborne LiDAR data. Paper presented at the Applied Imagery Pattern Recognition Workshop (AIPR), 2011, IEEE.Google Scholar
  56. Zhou, L., & Stein, A. (2013). Application of random sets to model uncertainty of road polygons extracted from airborne laser points. Computers, Environment and Urban Systems, 41, 289–298.  https://doi.org/10.1016/j.compenvurbsys.2012.06.006.CrossRefGoogle Scholar
  57. Zhou, W. (2013). An object-based approach for urban land cover classification: Integrating LiDAR height and intensity data. Geoscience and Remote Sensing Letters, IEEE, 10(4), 928–931.CrossRefGoogle Scholar
  58. Zhu, P., Lu, Z., Chen, X., Honda, K., & Eiumnoh, A. (2004). Extraction of city roads through shadow path reconstruction using laser data. Photogrammetric Engineering & Remote Sensing, 70(12), 1433–1440.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS)University of Technology SydneySydneyAustralia
  2. 2.Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS)University of Technology SydneySydneyAustralia

Personalised recommendations