Advertisement

Laser Scanning Technologies in Road Geometry Modeling

  • Biswajeet PradhanEmail author
  • Maher Ibrahim Sameen
Chapter
Part of the Advances in Science, Technology & Innovation book series (ASTI)

Abstract

Recent developments in laser scanning technology have improved 3D spatial data acquisition in road environments. These technological developments have provided rapid and cost-effective data acquisition for road corridors and surrounding areas (Guan et al. 2014; Li et al. 2016; Li and He 2016; Lin et al. 2011). Several methods have been proposed for the delineation of geometric road information from laser scanning data. Road geometric information includes road width, cross section, and superelevation and involves the number of road lanes and vertical and horizontal curves.

References

  1. Abdulwahid, W. M., & Pradhan, B. (2017). Landslide vulnerability and risk assessment for multi-hazard scenarios using airborne laser scanning data (LiDAR). Landslides, 14(3), 1057–1076.Google Scholar
  2. Arastounia, M. (2012). Automatic classification of lidar point clouds in a railway environment (p. 83). Netherlands: University of Twente.Google Scholar
  3. Baltsavias, E. P. (1999). Airborne laser scanning: Basic relations and formulas. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2), 199–214.CrossRefGoogle Scholar
  4. Brennan, R., & Webster, T. (2006). Object-oriented land cover classification of lidar-derived surfaces. Canadian Journal of Remote Sensing, 32(2), 162–172.CrossRefGoogle Scholar
  5. Camacho-Torregrosa, F. J., Perez-Zuriaga, A. M., Campoy-Ungria, J. M., & Garcia-Garcia, A. (2013). New geometric design consistency model based on operating speed profiles for road safety evaluation. Accident Analysis and Prevention, 61, 33–42.  https://doi.org/10.1016/j.aap.2012.10.001.CrossRefGoogle Scholar
  6. Charaniya, A. P., Manduchi, R., & Lodha, S. K. (2004). Supervised parametric classification of aerial lidar data. Paper presented at the Conference on Computer Vision and Pattern Recognition Workshop, 2004. CVPRW ‘04.Google Scholar
  7. Fanos, A. M., Pradhan, B., Aziz, A. A., Jebur, M. N., & Park, H. J. (2016). Assessment of multi-scenario rockfall hazard based on mechanical parameters using high-resolution airborne laser scanning data and GIS in a tropical area. Environmental Earth Sciences, 75(15), 1129.Google Scholar
  8. Fanos, A. M., Pradhan, B. (2018). Laser scanning systems and techniques in rockfall source identification and risk assessment: A critical review. Earth Systems and Environment, 2(2), 163–182.Google Scholar
  9. Fanos, A. M., Pradhan, B., Mansor, S., Yusoff, Z. M., & bin Abdullah, A. F. (2018). A hybrid model using machine learning methods and GIS for potential rockfall source identification from airborne laser scanning data. Landslides, 15(9), 1833–1850.Google Scholar
  10. Ferraz, A., Mallet, C., & Chehata, N. (2016). Large-scale road detection in forested mountainous areas using airborne topographic lidar data. ISPRS Journal of Photogrammetry and Remote Sensing, 112, 23–36.CrossRefGoogle Scholar
  11. Fiedler, P. E. K., & Zannin, P. H. T. (2015). Evaluation of noise pollution in urban traffic hubs—Noise maps and measurements. Environmental Impact Assessment Review, 51, 1–9.CrossRefGoogle Scholar
  12. Gikas, V. (2012). Three-dimensional laser scanning for geometry documentation and construction management of highway tunnels during excavation. Sensors, 12(8), 11249–11270.CrossRefGoogle Scholar
  13. Glennie, C. (2009). Kinematic terrestrial light-detection and ranging system for scanning. Transportation Research Record: Journal of the Transportation Research Board, 2105(1), 135–141.Google Scholar
  14. Gong, J., Zhou, H., Gordon, C., & Jalayer, M. (2012). Mobile terrestrial laser scanning for highway inventory data collection. In Computing in Civil Engineering (pp. 545–552).Google Scholar
  15. Goulette, F., Nashashibi, F., Abuhadrous, I., Ammoun, S., & Laurgeau, C. (2006). An integrated on-board laser range sensing system for on-the-way city and road modelling. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 34(A).Google Scholar
  16. Guan, H., Li, J., Yu, Y., Wang, C., Chapman, M., & Yang, B. (2014). Using mobile laser scanning data for automated extraction of road markings. ISPRS Journal of Photogrammetry and Remote Sensing, 87, 93–107.CrossRefGoogle Scholar
  17. Guan, H., Li, J., Yu, Y., Ji, Z., & Wang, C. (2015). Using mobile LiDAR data for rapidly updating road markings. IEEE Transactions on Intelligent Transportation Systems, 16(5), 2457–2466.CrossRefGoogle Scholar
  18. Hartfield, K. A., Landau, K. I., & Van Leeuwen, W. J. (2011). Fusion of high resolution aerial multispectral and LiDAR data: Land cover in the context of urban mosquito habitat. Remote Sensing, 3(11), 2364–2383.CrossRefGoogle Scholar
  19. He, Y., Song, Z., & Liu, Z. (2017). Updating highway asset inventory using airborne LiDAR. Measurement, 104, 132–141.CrossRefGoogle Scholar
  20. Hui, Z., Hu, Y., Jin, S., & Yevenyo, Y. Z. (2016). Road centerline extraction from airborne LiDAR point cloud based on hierarchical fusion and optimization. ISPRS Journal of Photogrammetry and Remote Sensing, 118, 22–36.CrossRefGoogle Scholar
  21. Idrees, M. O., & Pradhan, B. (2016). A decade of modern cave surveying with terrestrial laser scanning: A review of sensors, method and application development. International Journal of Speleology, 45(1), 71–88.Google Scholar
  22. Idrees, M. O., Pradhan, B., Buchroithner, M. F., Shafri, H. Z. M., & Khairunniza-Bejo, S. (2016) Assessing the transferability of a hybrid Taguchi-objective function method to optimize image segmentation for detecting and counting cave roosting birds using terrestrial laser scanning data. Journal of Applied Remote Sensing, 10(3), 035023.Google Scholar
  23. Idrees, M. O., & Pradhan, B. (2018). Geostructural stability assessment of cave using rock surface discontinuity extracted from terrestrial laser scanning point cloud. Journal of Rock Mechanics and Geotechnical Engineering, 10(3), 534–544.Google Scholar
  24. Jalayer, M., Gong, J., Zhou, H., & Grinter, M. (2015). Evaluation of remote sensing technologies for collecting roadside feature data to support highway safety manual implementation. Journal of Transportation Safety & Security, 7(4), 345–357.CrossRefGoogle Scholar
  25. Kang, M.-W., Shariat, S., & Jha, M. K. (2013). New highway geometric design methods for minimizing vehicular fuel consumption and improving safety. Transportation Research Part C: Emerging Technologies, 31, 99–111.  https://doi.org/10.1016/j.trc.2013.03.002.CrossRefGoogle Scholar
  26. Kukko, A., Jaakkola, A., Lehtomaki, M., Kaartinen, H., & Chen, Y. (2009, May). Mobile mapping system and computing methods for modeling of the road environment. In 2009 Joint Urban Remote Sensing Event (pp. 1–6). IEEE.Google Scholar
  27. Kumar, P., McElhinney, C. P., Lewis, P., & McCarthy, T. (2013). An automated algorithm for extracting road edges from terrestrial mobile LiDAR data. ISPRS Journal of Photogrammetry and Remote Sensing, 85, 44–55.CrossRefGoogle Scholar
  28. Kumar, P., McElhinney, C. P., Lewis, P., & McCarthy, T. (2014). Automated road markings extraction from mobile laser scanning data. International Journal of Applied Earth Observation and Geoinformation, 32, 125–137.  https://doi.org/10.1016/j.jag.2014.03.023.CrossRefGoogle Scholar
  29. Li, P., & He, J. (2016). Geometric design safety estimation based on tire–road side friction. Transportation Research Part C: Emerging Technologies, 63, 114–125.  https://doi.org/10.1016/j.trc.2015.12.009.CrossRefGoogle Scholar
  30. Li, M., Stein, A., Bijker, W., & Zhan, Q. (2016). Region-based urban road extraction from VHR satellite images using binary partition tree. International Journal of Applied Earth Observation and Geoinformation, 44, 217–225.CrossRefGoogle Scholar
  31. Lin, X., Zhang, J., Liu, Z., Shen, J., & Duan, M. (2011). Semi-automatic extraction of road networks by least squares interlaced template matching in urban areas. International Journal of Remote Sensing, 32(17), 4943–4959.  https://doi.org/10.1080/01431161.2010.493565.CrossRefGoogle Scholar
  32. Liu, Y., Monteiro, S. T., & Saber, E. (2016, July). Vehicle detection from aerial color imagery and airborne LiDAR data. In 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (pp. 1384–1387). IEEE.Google Scholar
  33. Minh, N. Q., & Hien, L. P. (2011). Land cover classification using LiDAR intensity data and neural network. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 29(4), 429–438.CrossRefGoogle Scholar
  34. Pagounis, V., Tsakiri, M., & Palaskas, S. (2007). Road safety analysis: Terrestrial laser scanning to improve road safety.Google Scholar
  35. Pereira, L. M. G., & Janssen, L. L. F. (1999). Suitability of laser data for DTM generation: A case study in the context of road planning and design, ISPRS Journal of Photogrammetry and Remote Sensing, 54, 244–253.Google Scholar
  36. Pradhan, B., Jebur, M. N., Shafri, H. Z. M., & Tehrany, M. S. (2016). Data fusion technique using wavelet transform and Taguchi methods for automatic landslide detection from airborne laser scanning data and quickbird satellite imagery. IEEE Transactions on Geoscience and remote sensing, 54(3), 1610–1622.Google Scholar
  37. Pradhan, B. (2017). Laser Scanning Applications in Landslide Assessment. Springer International Publishing, Germany. ISBN 978-3-319-55341-2; eBook ISBN 978-3-319-55342-9.Google Scholar
  38. Pu, S., Rutzinger, M., Vosselman, G., & Elberink, S. O. (2011). Recognizing basic structures from mobile laser scanning data for road inventory studies. ISPRS Journal of Photogrammetry and Remote Sensing, 66(6), S28–S39.CrossRefGoogle Scholar
  39. Puente, I., González-Jorge, H., Martínez-Sánchez, J., & Arias, P. (2013). Review of mobile mapping and surveying technologies. Measurement, 46(7), 2127–2145.Google Scholar
  40. Sameen, M. I., Pradhan, B., Shafri, H. Z., Mezaal, M. R., & bin Hamid, H. (2017). Integration of ant colony optimization and object-based analysis for LiDAR data classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(5), 2055–2066.Google Scholar
  41. Sameen, M. I., & Pradhan, B. (2017a). A two-stage optimization strategy for fuzzy object-based analysis using airborne LiDAR and high-resolution orthophotos for urban road extraction. Journal of Sensors, 2017.Google Scholar
  42. Sameen, M. I., & Pradhan, B. (2017b). Assessment of the effects of expressway geometric design features on the frequency of accident crash rates using high-resolution laser scanning data and GIS. Geomatics, Natural Hazards and Risk, 8(2), 733–747. http://dx.doi.org/10.1080/19475705.2016.1265012.
  43. Sameen, M. I., & Pradhan, B. (2017c). A simplified semi-automatic technique for highway extraction from high-resolution airborne LiDAR data and orthophotos. Journal of the Indian Society of Remote Sensing, 45(3), 395–405.Google Scholar
  44. Shamayleh, H., & Khattak, A. (2003, August). Utilization of LiDAR technology for highway inventory. In Proceedings of the 2003 Mid-continent Transportation Research Symposium, Ames, Iowa.Google Scholar
  45. Tao, C. V., & Li, J. (eds.) (2007) Advances in Mobile Mapping Technology. Taylor & Francis Group, London, ISBN 978-0-415-42723-4.Google Scholar
  46. Uddin, W. (2008). Airborne laser terrain mapping for expediting highway projects: Evaluation of accuracy and cost. Journal of Construction Engineering and Management, 134(6), 411–420.CrossRefGoogle Scholar
  47. Vosselman, G., & Maas, H-G. (eds.) (2010). Airborne and terrestrial laser scanning, Boca. Raton, London, New York, CRC Press, Taylor and Francis Group, 2010, xxiv'311 pp., ISBN 978-1904445-87-6.Google Scholar
  48. White, R. A., Dietterick, B. C., Mastin, T., & Strohman, R. (2010). Forest roads mapped using LiDAR in steep forested terrain. Remote Sensing, 2(4), 1120–1141.  https://doi.org/10.3390/rs2041120.CrossRefGoogle Scholar
  49. Williams, K., Olsen, M. J., Roe, G. V., & Glennie, C. (2013). Synthesis of transportation applications of mobile LiDAR. Remote Sensing, 5(9), 4652–4692.CrossRefGoogle Scholar
  50. Wulder, M. A., White, J. C., Nelson, R. F., Næsset, E., Ørka, H. O., Coops, N. C., et al. (2012). Lidar sampling for large-area forest characterization: A review. Remote Sensing of Environment, 121, 196–209.CrossRefGoogle Scholar
  51. Yan, W. Y., Shaker, A., & El-Ashmawy, N. (2015). Urban land cover classification using airborne LiDAR data: A review. Remote Sensing of Environment, 158, 295–310.  https://doi.org/10.1016/j.rse.2014.11.001.CrossRefGoogle Scholar
  52. Yan, W. Y., Shaker, A., Habib, A., & Kersting, A. P. (2012). Improving classification accuracy of airborne LiDAR intensity data by geometric calibration and radiometric correction. ISPRS Journal of Photogrammetry and Remote Sensing, 67, 35–44.  https://doi.org/10.1016/j.isprsjprs.2011.10.005.CrossRefGoogle Scholar
  53. Yang, B., Fang, L., & Li, J. (2013). Semi-automated extraction and delineation of 3D roads of street scene from mobile laser scanning point clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 79, 80–93.CrossRefGoogle Scholar
  54. Yen, K. S., Ravani, B., & Lasky, T. A. (2011). LiDAR for data efficiency (No. WA-RD 778.1).Google Scholar
  55. Yu, Y., Li, J., Guan, H., Jia, F., & Wang, C. (2015). Learning hierarchical features for automated extraction of road markings from 3-D mobile LiDAR point clouds. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(2), 709–726.CrossRefGoogle Scholar
  56. Zampa, F., & Conforti, D. (2009). Mapping with mobile lidar. GIM International, 23(4), 35–37.Google Scholar
  57. Zhang, J., Duan, M., Yan, Q., & Lin, X. (2014). Automatic vehicle extraction from airborne LiDAR data using an object-based point cloud analysis method. Remote Sensing, 6(9), 8405–8423.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS)University of Technology SydneySydneyAustralia
  2. 2.Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS)University of Technology SydneySydneyAustralia

Personalised recommendations