Advertisement

Photocatalytic Decontamination of Organic Pollutants Using Advanced Materials

  • Krishnasamy Lakshmi
  • Venkatramanan Varadharajan
  • Krishna Gounder Kadirvelu
Chapter

Abstract

Organic pollutants released into the natural environment such as a river, air and land pose a high threat to organisms that thrive in these environment. Industrial effluents are considered the major source of organic pollutants such as dyes, pesticides, and drugs such as antibiotics. Even with extensive regulations, numerous studies have found the presence of such organic pollutants in natural environments. Currently, the use of semiconductor materials for the photocatalytic destruction of organic pollutants got increased owing to their advantages such as high efficiency, low cost, and less toxicity. Among these materials, TiO2 based materials have shown superior pollutant degrading capability coupled with lower secondary pollution. This chapter reviews advanced photocatalytic materials available to degrade organic pollutants.

Keywords

Organic pollutants Environment Dye Photocatalysis TiO2 

References

  1. Abdollahi M, Ranjbar A, Shadnia S, Nikfar S, Rezaiee A (2004) Pesticde and oxidative stress: a review. Med Sci Monit 10(6):RA141–RA147Google Scholar
  2. Abellán MN, Bayarri B, Giménez J, Costa J(2007) Photocatalytic degradation of sulfamethoxazole in aqueous suspension of TiO2. Appl Catal B Environ 74(3):233–241CrossRefGoogle Scholar
  3. Andreozzi R, Caprio V, Insola A, Marotta R (1999) Advanced oxidation processes (AOP) for water purification and recovery. Catal Today 53(1):51–59CrossRefGoogle Scholar
  4. Ao Y, Xu J, Ashraf MA, Wang P, Wang C (2017) Bio-TiO2 nanobelt PN heterojunction with enhanced photocatalytic activity for degradation of reactive brilliant red and tetra bromobisphenol A under visible light. Environ Conserv Clean Water Air Soil:192Google Scholar
  5. Baxendale JH, Wilson JA(1957) The photolysis of hydrogen peroxide at high light intensities. Trans Faraday Soc 53:344CrossRefGoogle Scholar
  6. Behnam B, Vali F, Hooman N (2016) Genetic study of nephrotic syndrome in Iranian children- systematic review. J Ped Nephrol 42:51–55Google Scholar
  7. Borges ME, Sierra M, Cuevas E, García RD, Esparza P (2017) Photocatalytic Removal of the Antibiotic Cefotaxime on TiO2 and ZnO Suspensions Under Simulated Sunlight Radiation. Sol Energy 135:527–535Google Scholar
  8. Cabir B, Yurderi M, Caner N, Agirtas MS, Zahmakiran M, Kaya M(2017) Methylene blue photocatalytic degradation under visible light irradiation on copper phthalocyanine-sensitized TiO2 nanopowders. Mater Sci Eng B 224:9–17CrossRefGoogle Scholar
  9. Carmen Z, Daniela S (2012) Textile Organic Dyes – Characteristics, Polluting Effects and Separation/Elimination Procedures from Industrial Effluents – A Critical Overview. Environmental and Analytical Update. Environmental and analytical update. InTechGoogle Scholar
  10. Chen F, An W, Li Y, Liang Y, Cui W (2017) Fabricating 3D porous PANI/TiO2-graphene hydrogel for the enhanced UV-light photocatalytic degradation of BPA. Appl Surf Sci 427:123–132CrossRefGoogle Scholar
  11. Chong MN, Jin B, Chow CW, Saint C (2010) Recent developments in photocatalytic water treatment technology: A review. Water Res 44(10):2997–3027CrossRefGoogle Scholar
  12. Clarke EA, Anliker R (2005) , Color Chemistry: Synthesis, Properties, and Applications of Organic Dyes and Pigments, 3rd revised edition, The handbook of environmental chemistry. vol 3(3A). Springer, Berlin/HeidelbergGoogle Scholar
  13. Cordero-García A, Palomino GT, Hinojosa-Reyes L, Guzmán-Mar JL, Maya-Teviño L, Hernández-Ramírez A (2017) Photocatalytic behaviour of WO3/TiO2-N for diclofenacdegradation using simulated solar radiation as an activation source. Environ Sci Pollut Res 24(5):4613–4624CrossRefGoogle Scholar
  14. Daghrir R, Drogui P (2017) Advances in technologies for pharmaceuticals and personal care products removal. Robert D IEC Res 52:3581–3599Google Scholar
  15. Deblonde T, Cossu-Leguille C, Hartemann P (2011) Emerging pollutants in wastewater: A review of the literature. Int J Hyg Environ Health 214(6):442–448CrossRefGoogle Scholar
  16. Dominguez S, Huebra M, Han C, Campo P, Nadagouda MN, Rivero MJ, Ortiz I, Dionysiou DD (2017) Magnetically recoverable TiO2-WO3 photocatalyst to oxidize bisphenol A from model wastewater under simulated solar light. Environ Sci Pollut Res 24(14):12589–12598CrossRefGoogle Scholar
  17. Evgenidou E, Konstantinou I, Fytianos K, Poulios I, Albanis T (2007) Photocatalytic oxidation of methyl parathion over TiO 2 and ZnO suspensions. Catal Today 124(3):156–162CrossRefGoogle Scholar
  18. Foura G, Soualah A, Robert D (2016) Effect of W doping level on TiO2 on the photocatalytic degradation of Diuron. Water Sci Technol 75(1):20–27CrossRefGoogle Scholar
  19. Frank SN, Bard AJ (1976) Heterogeneous Photocatalytic Oxidation of Cyanide Ion in Aqueous Solutions at T1O2 Powder. J Am Chem Soc 99:303Google Scholar
  20. Gupta SM, Tripathi M Chin (2011) A review of TiO2 nanoparticles. Sci Bull 56:1639CrossRefGoogle Scholar
  21. Haller MY, SR M¨l, McArdell CS, Alder AC, Suter MJF (2002) Quantification of veterinary antibiotics (sulfonamides and trimethoprim) in animal manure by liquid chromatography–mass spectrometry. J Chromatogr A 952:111–120CrossRefGoogle Scholar
  22. Hartig C, Storm T, Jekel M (1999) Detection and identification of sulphonamide drugs in municipal waste water by liquid chromatography coupled with electrospray ionisation tandem mass spectrometry. J Chromatogr A 854:163–173CrossRefGoogle Scholar
  23. Hashimoto K, Irie H, Fujishima A Jpn (2005) TiO2 Photocatalysis: A Historical Overview and Future Prospects. J Appl Phys 44(12R):8269CrossRefGoogle Scholar
  24. Heberer T (2002) Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicol Lett 131(1):5–17CrossRefGoogle Scholar
  25. Hou Y, Wu L, Wang X, Ding Z, Z Li, Fu X (2007) Photocatalytic performance of α-, β-, and γ -Ga2O3 for the destruction of volatile aromatic pollutants in air. J Catal 250(1):12–18CrossRefGoogle Scholar
  26. Huang C, Ding Y, Chen Y, Li P, Zhu S, Shen S (2017) Highly efficient Zr doped-TiO2/glass fiber photocatalyst and its performance in formaldehyde removal under visible light. J Environ Sci 60:61–69CrossRefGoogle Scholar
  27. Jen JF, Lee HL, Lee BN (1998) Simultaneous determination of seven sulfonamide residues in swine waste water by high-performance liquid chromatography. J Chromatogr A 793:378–382CrossRefGoogle Scholar
  28. Jiang J, Zhang X, Sun P, Zhang L (2011) ZnO/BiOI Heterostructures: Photoinduced Charge-Transfer Property and Enhanced Visible-Light Photocatalytic Activity. J Phys Chem C 115(42):20555–20564CrossRefGoogle Scholar
  29. Lannoy A, Bleta R, Machut-Binkowski C, Addad A, Monflier E, Ponchel A (2017) Cyclodextrin-Directed Synthesis of Gold-Modified TiO2 Materials and Evaluation of Their Photocatalytic Activity in the Removal of a Pesticide from Water: Effect of Porosity and Particle Size. ACS Sustain Chem Eng 5(5):3623–3630CrossRefGoogle Scholar
  30. Lazar T (2005) Color Chemistry: Synthesis, Properties, and Applications of Organic Dyes and Pigments Color. Res Appl 30:313–314Google Scholar
  31. Mardani HR, Forouzani M, Ziari M, Biparva P (2015) Visible light photo-degradation of methylene blue over Fe or Cu promoted ZnO nanoparticles. Spectrochim Acta Part A Mol Biomol Spectrosc 141:27–33CrossRefGoogle Scholar
  32. Matos J, Miralles-Cuevas S, Ruíz-Delgado A, Oller I, Malato S (2007) Development of TiO2-C photocatalysts for solar treatment of polluted water. Carbon 122:361–373CrossRefGoogle Scholar
  33. Mendiola-Alvarez SY, Guzmán-Mar JL, Turnes-Palomino G, Maya-Alejandro F, Hernández-Ramírez A, Hinojosa-Reyes L (2017) UVand visible activation of Cr(III)-doped TiO2 catalyst prepared by a microwave-assisted sol–gel method during MCPA degradation. Environ Sci Pollut Res 24(14):12673–12682CrossRefGoogle Scholar
  34. Moongraksathum B, Chen YW (2017) CeO2–TiO2 mixed oxide thin films with enhanced photocatalytic degradation of organic pollutants. J Sol-Gel Sci Technol 82(3):772–782CrossRefGoogle Scholar
  35. Othman SH, Rashid SA, Ghazi TIM, Abdullah N (2012) Dispersion and stabilization of photocatalytic TiO2 nanoparticles in aqueous suspension for coatings applications. J Nanomater 2012:2Google Scholar
  36. Pawar RC, Khare V, Lee CS (2014 )Hybrid photocatalysts using graphitic carbon nitride/cadmium sulfide/reduced graphene oxide (g-C3N4/CdS/RGO) for superior photodegradation of organic pollutants under UV and visible light. Dalton Trans 43(33):12514–12527CrossRefGoogle Scholar
  37. Pradhan GK, Padhi DK, Parida KM (2013) Fabrication of α-Fe2O3 nanorod/RGO composite: A novel hybrid photocatalyst for phenol Degradation. ACS Appl Mater Interfaces 5(18):9101–9110CrossRefGoogle Scholar
  38. Pu S, Zhu R, Ma H, Deng D, Pei X, Qi F, Chu W (2017) Facile In-situ Design Strategy to Disperse TiO2 Nanoparticles on Graphene for the Enhanced Photocatalytic Degradation of Rhodamine 6G. Appl Catal B Environ 218:208–219CrossRefGoogle Scholar
  39. Rathore P, Chittora AK, Ameta R, Sharma S (2015) Enhancement of Photocatalytic Activity of Zinc Oxide by Doping with Nitrogen. Sci Rev Chem Commun 5(4)Google Scholar
  40. Rezaei M, Habibi-Yangjeh A (2013) Simple and large scale refluxing method for preparation of Ce-doped ZnO nanostructures as highly efficient photocatalyst. Appl Surf Sci 265:591–596CrossRefGoogle Scholar
  41. Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative . Bioresour Technol 77(3):247–255CrossRefGoogle Scholar
  42. Sahibed-dine A, Bentiss F, Bensitel M (2017) The photocatalytic degradation of methylene bleu over TiO2 catalysts supported on hydroxyapatite. J Mater 8(4):1301–1311Google Scholar
  43. Saranya M, Garg S, Singh I, Ramachandran R, Santhosh C, Harish C, Vanchinathan TM, Chandra MB, Grace AN (2013) Solvothermal Preparation of ZnO/Graphene Nanocomposites and Its Photocatalytic Properties . Nanosci Nanotechnol Lett 5(3):349–354CrossRefGoogle Scholar
  44. Shen L, Xing Z, Zou J, Z Li XW, Zhang Y, Zhu Q, Yang S, Zhou W (2017) Black TiO2 nanobelts/g-C3N4 nanosheets Laminated Heterojunctions with Efficient Visible-Light-Driven Photocatalytic Performance. Sci Rep 7Google Scholar
  45. Shetty R, Chavan VB, Kulkarni PS, Kulkarni BD, Kamble SP (2014) Photocatalytic Degradation of Pharmaceuticals Pollutants Using N-Doped TiO2 Photocatalyst: Identification of CFX Degradation. Indian Chem Eng 59(3):177–199Google Scholar
  46. Subash B, Krishnakumar B, Swaminathan M, Shanthi M (2013) Solar-light-assisted photocatalytic degradation of NBB dye on Zr-codoped Ag–ZnO catalyst. Res Chem Intermed 39(7):3181–3197CrossRefGoogle Scholar
  47. Tabasideh S, Maleki A, Shahmoradi B, Ghahremani E, McKay G Sep (2017) Sono photocatalytic degradation of diazinon in aqueous solution using iron-doped TiO2 nanoparticles. Purif Technol 189:186–192CrossRefGoogle Scholar
  48. Tang WZ, An H (1995) Photocatalytic Degradation Kinetics and Mechanism of Acid Blue 40 by TiO,/UV in Aqueous Solution. Chemosphere 31(9):4171–4183CrossRefGoogle Scholar
  49. Tavakoli F, Badiei A, Ziarani GM, Tarighi S (2017) Photocatalytic Application of TiO2–AgI Hybrid for Degradation of Organic Pollutants in Water. Int J Environ Res:1–8Google Scholar
  50. Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418(6898):671–677CrossRefGoogle Scholar
  51. Wang CC, Li JR, Lv XL, Zhang YQ (2014) Photocatalytic organic pollutants degradation in metal–organic frameworks. Guo G Energy Environ Sci 7(9):2831–2867CrossRefGoogle Scholar
  52. Wang S, Yuan G, Liping W, Wei Z, Huan H, Jun X, Shaogui Y, Cheng S (2015) Carbon Dots Sensitized BiOI with Dominant {001} Facets for Superior Photocatalytic Performance. Appl Catal Environ 168:448–457Google Scholar
  53. Wenderich K, Mul G (2016) Methods, Mechanism, and Applications of Photodeposition in Photocatalysis: A Review. Chem Rev 116(23):14587–14619CrossRefGoogle Scholar
  54. Xu D, Cheng B, Cao S, Yu (2015) Enhanced photocatalytic activity and stability of Z-schemeAg2CrO4-GO composite photocatalysts for organic pollutantdegradation. J Appl Catal B Environ 164:380–388Google Scholar
  55. Yin D, Zhang L, K Song YO, Wang C, Liu B, Wu M (2014) ZnO Nanoparticles Co-Doped with Fe3+ and Eu3+ Ions for Solar Assisted Photocatalysis. J Nanosci Nanotechnol 14(8):6077–6083Google Scholar
  56. Zanella R, Avella E, Ramírez-Zamora RM, Castillón-Barraza F, Durán-Álvarez JC (2017) Enhanced photocatalytic degradation of sulfamethoxazole by deposition of Au, Ag and Cu metallic nanoparticles on TiO2. Environ Technol:1–12Google Scholar
  57. Zhang G, Song A, Duan Y, Zheng S (2018) Enhanced photocatalytic activity of TiO2/zeolite composite for abatement of pollutants. Microporous Mesoporous Mater 255:61–68CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Krishnasamy Lakshmi
    • 1
  • Venkatramanan Varadharajan
    • 1
  • Krishna Gounder Kadirvelu
    • 1
  1. 1.DRDO-BU Center for Life SciencesBharathiar UniversityCoimbatoreIndia

Personalised recommendations