A New Polyoxovanadate Based Hybrid Materials: A Promising Sensor for Picric Acid and Pd2+ Found in the Aqueous Environment

  • Mukul Raizada
  • M. Shahid
  • Farasha Sama


Apart from traditional metal-organic frameworks as sensitive materials, discrete cages or clusters to sense hazardous species are uncommon. Keeping this view in mind, a new hybrid discrete material of decavanadate anion and copper complex cations is designed for the purpose. A novel polyoxovanadate (POV)-based inorganic-organic hybrid compound showing the unique combination of first anagostic(V···H) interaction was synthesized. Single crystal X-ray data ascertained the bonding modes and geometry of the complex along with novel anagostic weak intermolecular interactions in the complex material. X-ray crystallography confirmed the composition of the cluster to be {Cu(Pyno)4}{NEt3H}2[H2V10O28] (1), containing decavanadate as an anion with square planar copper(II) complex and triethylammonium as cations. The compound was further characterized by FTIR, time decay and magnetic studies. Magnetic studies confirmed the presence of the Cu2+ state in the complex at RT as well as low temperature. The cluster displayed rare intermolecular V⋯H, lp⋯π, V–O⋯H, π⋯π and C–H⋯H interactions, which generate a supramolecular framework. Hirshfeld surface analyses have verified these interactions. The hybrid material is disclosed as the first aqueous phase sensor for picric acid (PA) as well as Pd2+. The complex shows highly sensitive, discriminative and selective sensing behavior for the said species and is the first example of its type in discrete molecule category. The sensing pathways are investigated by spectral titrations, time decay, and DFT (B3LYP/def2–SVP) studies. The lowest detection limit has been discovered for the present POV towards the sensing of both PA and Pd2+ ions with ~0.18 and ~0.80 ppb, respectively.


Polyoxovanadate Anagostic Magnetic studies Aqueous phase sensor DFT 


  1. Ahmed I, Farha R, Goldmann M, Ruhlmann L (2013) Chem Commun 49:496–498CrossRefGoogle Scholar
  2. An H-Y, Wang E-B, Xiao D-R, Li Y-G, Su Z-M, Xu L (2006) Angew Chem Int Ed 45:904–908CrossRefGoogle Scholar
  3. An H, Hu Y, Wang L, Zhou E, Fei F, Su Z (2015) Cryst Growth Des 15:164–175CrossRefGoogle Scholar
  4. Ansari IA, Sama F, Raizada M, Shahid M, Ahmad M, Siddiqi ZA (2016) New J Chem 40:9840–9852CrossRefGoogle Scholar
  5. Armstrong DR, Davidson MG, Moncrief D (1995) Angew Chem Int Ed Eng 34:478CrossRefGoogle Scholar
  6. Aronica C, Chastanet G, Zueva E, Borshch SA, Clemente-Juan JM, Luneau D (2008) J Am Chem Soc 130:2365–2371CrossRefGoogle Scholar
  7. Barea E, Montoro C, Navarro JAR (2014) Chem Soc Rev 43:5419–5430CrossRefGoogle Scholar
  8. Basler R, Chaboussant G, Sieber A, Andres H, Murrie M, Kögerler P, Bögge H, Crans DC, Krickemeyer E, Janssen S, Mutka H, Müller A, Güdel H-U (2002) Inorg Chem 41:5675–5685CrossRefGoogle Scholar
  9. Braga D, Grepioni F, Biradha K, Desiraju GR (1996) J Chem Soc Dalton Trans:3925–3930Google Scholar
  10. Breen JM, Schmitt W (2008) Angew Chem 120:7010–7014CrossRefGoogle Scholar
  11. Brookhart M, Green MLH, Parkin G (2007) Proc Natl Acad Sci U S A 104:6908CrossRefGoogle Scholar
  12. Brown ID (ed) (1981) Structure and bonding in crystals. Academic, New YorkGoogle Scholar
  13. Brown ID, Altermatt D (1985) Acta Crystallogr Sect B 41:244CrossRefGoogle Scholar
  14. Cai S, Lu Y, He S, Wei F, Zhaoab L, Zeng X (2013) Chem Commun 49:822CrossRefGoogle Scholar
  15. Cameron JM, Newton GN, Busche C, Long D-L, Oshio H, Cronin L (2013) Chem Commun 49:3395–3397CrossRefGoogle Scholar
  16. Chen B, Huang X, Wang B, Lin Z, Hu J, Chi Y, Hu C (2013) Chem Eur J 19:4408–4413CrossRefGoogle Scholar
  17. Chen W-C, Qin C, Wang X-L, Li Y-G, Zang H-Y, Jiao Y-Q, Huang P, Shao K-Z, Su Z-M, Wang E-B (2014) Chem Commun 50:13265–13267CrossRefGoogle Scholar
  18. Cho W, Lee HJ, Choi G, Choi S, Oh M (2014) J Am Chem Soc 136:12201–12204CrossRefGoogle Scholar
  19. Chowdhury A, Mukherjee PS (2015) J Organomet Chem 80:4064–4075CrossRefGoogle Scholar
  20. Corigliano F, di Pasquale S (1975) Inorg Chim Acta 12:99–101CrossRefGoogle Scholar
  21. Cronin L, Long D-L (2012) Dalton Trans 41(thematic issue):33Google Scholar
  22. Cronin L, Müller A (2012) Chem Soc Rev 41(thematic issue):24Google Scholar
  23. Cui Y, Yue Y, Qian G, Chen B (2012) Chem Rev 112:1126CrossRefGoogle Scholar
  24. Desiraju GR (2005) Chem Commun 28:2995CrossRefGoogle Scholar
  25. Dey T, Chatterjee P, Bhattacharya A, Pal S, Mukherjee AK (2016) Cryst Growth Des 16:1442CrossRefGoogle Scholar
  26. Dimitrou K, Brown AD, Concolino TE, Rheingold AL, Christou G (2001) Chem Commun 14:1284–1285CrossRefGoogle Scholar
  27. Dolbecq A, Dumas E, Mayer CR, Mialane P (2010) Chem Rev 110:6009–6048CrossRefGoogle Scholar
  28. Du D-Y, Qin J-S, Li S-L, Su Z-M, Lan Y-Q (2014) Chem Soc Rev 43:4615–4632CrossRefGoogle Scholar
  29. Duan L, Xu Y, Qian X (2008) Chem Commun 47:6339CrossRefGoogle Scholar
  30. Eguchi R, Uchida S, Mizuno N (2012a) J Phys Chem C 116:16105–16110CrossRefGoogle Scholar
  31. Eguchi R, Uchida S, Mizuno N (2012b) Angew Chem Int Ed 51:1635–1639CrossRefGoogle Scholar
  32. El-Maali NA, Osman AH, Aly AAM, Al-Hazmi GAA (2005) Bioelectrochemistry 65:95–104CrossRefGoogle Scholar
  33. Evans HT (1966) Inorg Chem 5:967–977CrossRefGoogle Scholar
  34. Fernández de Luis R, Urtiaga MK, Mesa JL, Larrea ES, Iglesias M, Rojo T, Arriortua MI (2013) Inorg Chem 52:2615–2626CrossRefGoogle Scholar
  35. Fu H, Qin C, Lu Y, Zhang Z-M, Li Y-G, Su Z-M, Li W-L, Wang E-B (2012) Angew Chem Int Ed 51:7985–7989CrossRefGoogle Scholar
  36. Fuchs J, Mahjour S, Palm R, Naturforsch Z (1976) Anorg Chem Org Chem 31B:544Google Scholar
  37. Garrett CE, Prasad K (2004) Adv Synth Catal 346:889CrossRefGoogle Scholar
  38. Gatteshi D, Ganeschi A, Pardi L, Sessoli R (1994) Science 265:1054CrossRefGoogle Scholar
  39. Germain ME, Knapp MJ (2009) Chem Soc Rev 38:2543–2555CrossRefGoogle Scholar
  40. Gole B, Bar AK, Mukherjee PS (2014a) Chem Eur J 20:2276–2291CrossRefGoogle Scholar
  41. Gole B, Song W, Lackinger M, Mukherjee PS (2014b) Chem Eur J 20:13662CrossRefGoogle Scholar
  42. Griffith WP, Lesniak PJB (1969) J Chem Soc A 7:1066–1071CrossRefGoogle Scholar
  43. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104CrossRefGoogle Scholar
  44. Guillou O, Bergerat P, Kahn O, Bakalbassis E, Boubekeur K, Batail P, Guillot M (1992) Inorg Chem 31:110–114CrossRefGoogle Scholar
  45. Han JW, Hill CL (2007) J Am Chem Soc 129:15094–15095CrossRefGoogle Scholar
  46. Hayashi Y (2011) Coord Chem Rev 255:2270–2280CrossRefGoogle Scholar
  47. He G, Peng H, Liu T, Yang M, Zhang Y, Fang Y (2009) J Mater Chem 19:7347CrossRefGoogle Scholar
  48. He Y-C, Yang J, Kan W-Q, Zhang H-M, Liu Y-Y, Ma J-F (2015) J Mater Chem A 3:1675–1681CrossRefGoogle Scholar
  49. Hendon CH, Tiana D, Fontecave M, Sanchez C, D’arras L, Sassoye C, Rozes L, Mellot-Draznieks C, Walsh A (2013) J Am Chem Soc 135:10942CrossRefGoogle Scholar
  50. Heng S, Mak AM, Stubing DB, Monro TM, Abell A d (2014) Anal Chem 86:3268–3272CrossRefGoogle Scholar
  51. Holaday MGD, Tarafdar G, Kumar A, Reddy MLP, Srinivasan A (2014) Dalton Trans 43:7699CrossRefGoogle Scholar
  52. Hu Z, Deibert BJ, Li J (2014) Chem Soc Rev 43:5815CrossRefGoogle Scholar
  53. Hu X, Qin C, Wang X, Shao K, Su Z (2015) New J Chem 39:7858–7862CrossRefGoogle Scholar
  54. Huang H, Wang K, Tan W, An D, Yang X, Huang S, Zhai Q, Zhou L, Jin Y (2004) Angew Chem Int Ed 43:5635CrossRefGoogle Scholar
  55. Huynh HV, Wong LR, Ng PS (2008) Organometallics 27:2231CrossRefGoogle Scholar
  56. Ibers JA, Hamilton WC (1974) International tables for x-ray crystallography, vol IV. Kynoch Press, BirminghamGoogle Scholar
  57. Ito T, Yamase T (2010) Materials 3:158CrossRefGoogle Scholar
  58. Ito T, Taira M, Fukumoto K, Yamamoto K, Naruke H, Tomita K (2012) Bull Chem Soc Jpn 85:1222–1224CrossRefGoogle Scholar
  59. Jia C, Piao D, Oyamada J, Lu W, Kitamura T, Fujiwara Y (2000) Science 287:1992CrossRefGoogle Scholar
  60. Kaiser CR, Pais KC, de Souza MVN, Wardell JL, Wardell SMSV, Tiekink ERT (2009) CrystEngComm 11:1133CrossRefGoogle Scholar
  61. Kanoo P, Ghosh AC, Maji TK (2011) Inorg Chem 50:5145–5152CrossRefGoogle Scholar
  62. Kaur P, Kaur N, Kaur M, Dhuna V, Singh J, Singh K (2014) RSC Adv 4:16104CrossRefGoogle Scholar
  63. Kawahara R, Uchida S, Mizuno N (2014) Inorg Chem 53:3655–3661CrossRefGoogle Scholar
  64. Kögerler P, Tsukerblat B, Müller A (2010) Dalton Trans 39(21):36Google Scholar
  65. Lan Y-Q, Li S-L, Wang X-L, Shao K-Z, Du D-Y, Su Z-M, Wang E-B (2008) Chem Eur J 14:9999–10006CrossRefGoogle Scholar
  66. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785CrossRefGoogle Scholar
  67. Li J-R, Yu Q, Sañudo C, Tao Y, Song W-C, Bu X-H (2008) Chem Mater 20:1218–1220CrossRefGoogle Scholar
  68. Li H, Fan J, Du J, Guo K, Sun S, Liu X, Peng X (2010) Chem Commun 46:1079CrossRefGoogle Scholar
  69. Li S, Liu S, Liu S, Liu Y, Tang Q, Shi Z, Ouyang S, Ye J (2012) J Am Chem Soc 134:19716–19721CrossRefGoogle Scholar
  70. Li S, Sun W, Wang K, Ma H, Pang H, Liu H, Zhang J (2014) Inorg Chem 53:4541–4547CrossRefGoogle Scholar
  71. Li J, Huang X, Yang S, Xu Y, Hu C (2015a) Cryst Growth Des 15:1907–1914CrossRefGoogle Scholar
  72. Li J-K, Huang X-Q, Yang S, Ma H-W, Chi Y-N, Hu C-W (2015b) Inorg Chem 54:1454–1461CrossRefGoogle Scholar
  73. Lin C-K, Zhao D, Gao W-Y, Yang Z, Ye J, Xu T, Ge Q, Ma S, Liu D-J (2012) Inorg Chem 51:9039CrossRefGoogle Scholar
  74. Liu W, Thorp HH (1993) Inorg Chem 32:4102CrossRefGoogle Scholar
  75. Liu D, Lu Y, Tan H-Q, Chen W-L, Zhang Z-M, Li Y-G, Wang E-B (2013a) Chem Commun 49:3673–3675CrossRefGoogle Scholar
  76. Liu B, Yang J, Yang G-C, Ma J-F (2013b) Inorg Chem 52:84–94CrossRefGoogle Scholar
  77. Liu D, Lu Y, Tan H-Q, Wang T-T, Wang E-B (2015) Cryst Growth Des 15:103–114CrossRefGoogle Scholar
  78. Long D-L, Burkholder E, Cronin L (2007) Chem Soc Rev 36:105–121CrossRefGoogle Scholar
  79. Lv H, Guo W, Wu K, Chen Z, Bacsa J, Musaev DG, Geletii YV, Lauinger SM, Lian T, Hill CL (2014) J Am Chem Soc 136:14015–14018CrossRefGoogle Scholar
  80. Mahimaidoss MB, Krasnikov SA, Reck L, Onet CI, Breen JM, Zhu N, Marzec B, Shvets IV, Schmitt W (2014) Chem Commun 50:2265–2267CrossRefGoogle Scholar
  81. Martin JW, Newman PWG, Robinson BW, White AH (1972) J Chem Soc Dalton Trans 1:2233CrossRefGoogle Scholar
  82. McGlone T, Thiel J, Streb C, Long D-L, Cronin L (2012) Chem Commun 48:359–361CrossRefGoogle Scholar
  83. Meaney MS, McGuffin VL (2008) Anal Bioanal Chem 391:2557–2576CrossRefGoogle Scholar
  84. Miras HN, Yan J, Long D-L, Cronin L (2012) Chem Soc Rev 41:7403–7430CrossRefGoogle Scholar
  85. Miras HN, Vilà-Nadal L, Cronin L (2014) Chem Soc Rev 43:5679–5699CrossRefGoogle Scholar
  86. Mukhopadhyay A, Pal S (2006) Eur J Inorg Chem 23:4879–4887CrossRefGoogle Scholar
  87. Müller A, Peters F, Pope MT, Gatteschi D (1998) Chem Rev 98:239–271CrossRefGoogle Scholar
  88. Murphy G, Nagle P, Murphy B, Hathaway B (1997) J Chem Soc Dalton Trans 15:2645–2652CrossRefGoogle Scholar
  89. Nagarkar SS, Desai AV, Ghosh SK (2014) Chem Commun 50:8915CrossRefGoogle Scholar
  90. Nakamura S, Ozeki T (2008) Dalton Trans 0:6135–6140CrossRefGoogle Scholar
  91. Neelakantana MA, Rusalraja F, Dharmarajaa J, Johnsonrajaa S, Jeyakumarb T, Pillaic MS (2008) Spectrochim Acta Part A 71:1599–1609CrossRefGoogle Scholar
  92. Neese F (2009) Orca. An ab Initio, Density functional and semiempirical program package versionGoogle Scholar
  93. Neese F (2012) WIREs Comput Mol Sci 2:73CrossRefGoogle Scholar
  94. Newman PWG, White AH (1972a) J Chem Soc Dalton Trans 1:1460CrossRefGoogle Scholar
  95. Newman PWG, White AH (1972b) J Chem Soc Dalton Trans 1:2239CrossRefGoogle Scholar
  96. Nohra B, El Moll H, Rodriguez Albelo LM, Mialane P, Marrot J, Mellot-Draznieks C, O’Keeffe M, Ngo Biboum R, Lemaire J, Keita B, Nadjo L, Dolbecq A (2011) J Am Chem Soc 133:13363–13374CrossRefGoogle Scholar
  97. Nyman M, Ingersoll D, Singh S, Bonhomme F, Alam TM, Brinker CJ, Rodriguez MA (2005) Chem Mater 17:2885CrossRefGoogle Scholar
  98. Nyman M, Rodriguez MA, Anderson TM, Ingersoll D (2009) Cryst Growth Des 9:3590CrossRefGoogle Scholar
  99. O’Connor CJ (1982) Prog Inorg Chem 29:203Google Scholar
  100. Onodera S, Ikegami Y (1980) Inorg Chem 19:615–618CrossRefGoogle Scholar
  101. Panchompoo J, Aldous L, Baker M, Wallace MI, Compton RG (2012) Analyst 137:2054CrossRefGoogle Scholar
  102. Parrot A, Izzet G, Chamoreau L-M, Proust A, Oms O, Dolbecq A, Hakouk K, El Bekkachi H, Deniard P, Dessapt R, Mialane P (2013) Inorg Chem 52:11156–11163CrossRefGoogle Scholar
  103. Pope MT (1983) Heteropoly and isopoly oxometalates. Springer, BerlinCrossRefGoogle Scholar
  104. Pope MT, Müller A (eds) (1994) Polyoxometalates: from platonic solids to anti-retroviral activity. Kluwer, DordrechtGoogle Scholar
  105. Pope MT, Müller A (eds) (2001) Polyoxometalate chemistry: from topology via self-assembly to applications. Kluwer, DordrechtGoogle Scholar
  106. Pramanik S, Zheng C, Zhang X, Emge TJ, Li J (2011) J Am Chem Soc 133:4153–4155CrossRefGoogle Scholar
  107. Qin J-S, Du D-Y, Guan W, Bo X-J, Li Y-F, Guo L-P, Su Z-M, Wang Y-Y, Lan Y-Q, Zhou H-C (2015) J Am Chem Soc 137:7169–7177CrossRefGoogle Scholar
  108. Rakovsky E, Joniakova D, Gyepes R, Schwendt P, Micka Z (2005) Cryst Res Technol 40:719–722CrossRefGoogle Scholar
  109. Saha S, Mahato P, Reddy U, Suresh GE, Chakrabarty A, Baidya M, Ghosh SK, Das A (2012) Inorg Chem 51:336–−345CrossRefGoogle Scholar
  110. Salinas Y, Manez RM, Marcos MD, Sancenon F, Castero AM, Parra M, Gil S (2012) Chem Soc Rev 41:1261–1296CrossRefGoogle Scholar
  111. Sama F, Ansari IA, Raizada M, Ahmad M, Nagaraja CM, Shahid M, Kumar A, Khan K, Siddiqi ZA (2017a) New J Chem 41:1959–1972CrossRefGoogle Scholar
  112. Sama F, Dhara AK, Akhtar MN, Chen Y, Tong M, Ansari IA, Raizada M, Ahmad M, Shahid M, Siddiqi ZA (2017b) Dalton Trans 46:9801CrossRefGoogle Scholar
  113. Samara CD, Janakoudakis PD, Kessissaglou DP, Manoyussakis GE, Mentzapfos D, Terzis A (1992) J Chem Soc Dalton Trans 1:3259–3264CrossRefGoogle Scholar
  114. Saßmannshausen J (2012) Dalton Trans 41:1919CrossRefGoogle Scholar
  115. Schaefer A, Horn H, Ahlrichs R (1992) J Chem Phys 97:2571CrossRefGoogle Scholar
  116. Schaefer A, Huber C, Ahlrichs R (1994) J Chem Phys 100:5829CrossRefGoogle Scholar
  117. Schindler M, Hawthorne FC, Baur WH (2000) Chem Mater 12:1248–1259CrossRefGoogle Scholar
  118. Schöler S, Wahl MH, Wurster NIC, Puls A, Hättig C, Dyker G (2014) Chem Commun 50:5909CrossRefGoogle Scholar
  119. Seth SK (2014) J Mol Struct 1070:65–74CrossRefGoogle Scholar
  120. Seth SK, Sarkar D, Royd A, Kar T (2011a) CrystEngComm 13:6728–6741CrossRefGoogle Scholar
  121. Seth SK, Sarkar D, Kar T (2011b) CrystEngComm 13:4528–4535CrossRefGoogle Scholar
  122. Seth SK, Lee VS, Yana J, Zain SM, Cunha AC, Ferreira VF, Jordão AK, de Souza MCBV, Wardell SMSV, Wardellf JL, Tiekink ERT (2015) CrystEngComm 17:2255–2266CrossRefGoogle Scholar
  123. Shanmugaraju S, Mukherjee PS (2015) Chem Eur J 21:6656–6666CrossRefGoogle Scholar
  124. Sheldon RA, Kochi JA (1981) Metal Catalysed Oxidations of Organic Compounds. Academic, New YorkGoogle Scholar
  125. Sheldrick GM (2002) SADABS, software for empirical absorption correction, Ver. 2.05. University of Göttingen, GöttingenGoogle Scholar
  126. Sheldrick GM (2008) SHELXL97, Program for crystal structure refinement. University of Göttingen, GöttingenGoogle Scholar
  127. Sheldrick GM (2015) Acta Cryst C 71:3–8CrossRefGoogle Scholar
  128. Shiraishi Y, Matsunaga Y, Hongpitakpong P, Hirai T (2013) Chem Commun 49:3434–3436CrossRefGoogle Scholar
  129. Shivaiah V, Das SK (2005) Inorg Chem 44:8846–8854CrossRefGoogle Scholar
  130. Siddiqi ZA, Mathew VJ (1994) Polyhedron 13:799–805CrossRefGoogle Scholar
  131. Siddiqui KA, Tiekink ERT (2013) Chem Commun 49:8501CrossRefGoogle Scholar
  132. SMART & SAINT (2003) Software reference manuals, version 6.45. Bruker Analytical X-Ray Systems, Inc., MadisonGoogle Scholar
  133. Sokolov AN, Friscic T, Blais S, Ripmeester JA, MacGillivray LR (2006) Cryst Growth Des 6:2427CrossRefGoogle Scholar
  134. Spackman MA, Jayatilaka D (2009) CrystEngComm 11:19CrossRefGoogle Scholar
  135. Stavila V, Talin AA, Allendorf MD (2014) Chem Soc Rev 43:5994–6010CrossRefGoogle Scholar
  136. Steed JW, Atwood JL (2000) Supramolecular Chemistry. VCH, New YorkGoogle Scholar
  137. Steffen C, Thomas K, Huniar U, Hellweg A, Rubner O, Schroer A (2010) J Comput Chem 31:2967Google Scholar
  138. Tahmasebi E, Masoomi MY, Yamini Y, Morsali A (2015) Inorg Chem 54:425–433CrossRefGoogle Scholar
  139. Takahashi S, Jukurogi T, Katagiri T, Uneyama K (2006) CrystEngComm 8:320CrossRefGoogle Scholar
  140. Tan Y-X, Zhang Y, He Y-P, Zheng Y-J, Zhang J (2014) Inorg Chem 53:12973–12976CrossRefGoogle Scholar
  141. Tanaka S, Annaka M, Sakai K (2012) Chem Commun 48:1653–1655CrossRefGoogle Scholar
  142. Tiekink ERT, Schpector J-Z (2011) J Chem Soc ChemCommun 47:6623Google Scholar
  143. Toal SJ, Trogler WC (2006) J Mater Chem 16:2871–2883CrossRefGoogle Scholar
  144. Truflandier LA, Boucher F, Payen C, Hajjar R, Millot Y, Bonhomme C, Steunou N (2010) J Am Chem Soc 132:4653–4668CrossRefGoogle Scholar
  145. Uchida S, Mizuno N (2007) Coord Chem Rev 251:2537–2546CrossRefGoogle Scholar
  146. Venegas-Yazigi D, Brown KA, Vega A, Calvo R, Aliaga C, Santana RC, Cardoso-Gil R, Kniep R, Schnelle W, Spodine E (2011) Inorg Chem 50:11461–11471CrossRefGoogle Scholar
  147. Wang Y, Ye L, Wang T-G, Cui X-B, Shi S-Y, Wang G-W, Xu JQ (2010a) Dalton Trans 39:1916–1919CrossRefGoogle Scholar
  148. Wang X, Hu H, Liu G, Lin H, Tian A (2010b) Chem Commun 46:6485–6487CrossRefGoogle Scholar
  149. Wang J, Li Y, Patel NG, Zhang G, Zhou D, Pang Y (2014) Chem Commun 50:12258–12261CrossRefGoogle Scholar
  150. Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297CrossRefGoogle Scholar
  151. Wery ASJ, Gutierrez-Zorrila JM, Luque A, Roman P, Martinez-Ripoll M (1996) Polyhedron 15:4555–4564CrossRefGoogle Scholar
  152. Wolff SK, Grimwood DJ, McKinnon JJ, Turner MJ, Jayatilaka D, Spackman MA (2012) CrystalExplorer, version 3.0. University of Western Australia, CrawleyGoogle Scholar
  153. Wu W, Ye S, Yu G, Liu Y, Qin J, Li Z (2012) Macromol Rapid Commun 33:164CrossRefGoogle Scholar
  154. Wutkowski A, Näther C, Kögerler P, Bensch W (2013) Inorg Chem 52:3280–3284CrossRefGoogle Scholar
  155. Xi Y-P, Mak TCW (2012) Chem Commun 48:1123–1125CrossRefGoogle Scholar
  156. XPREP, version 5.1. Siemens Industrial Automation Inc., Madison (1995)Google Scholar
  157. Xu B, Wu X, Li H, Tong H, Wang L (2011) Macromolecules 44:5089CrossRefGoogle Scholar
  158. Yadav R, Trivedi M, Kociok-Köhn G, Prasad R, Kumar A (2015) CrystEngComm 17:9175CrossRefGoogle Scholar
  159. Yao W, Eisenstein O, Crabtree RH (1997) Inorg Chim Acta 254:105CrossRefGoogle Scholar
  160. Ye J, Zhao L, Bogale RF, Gao Y, Wang X, Qian X, Guo S, Zhao J, Ning G (2029) Chem Eur J 2015:21Google Scholar
  161. Yin P, Wu P, Xiao Z, Li D, Bitterlich E, Zhang J, Cheng P, Vezenov DV, Liu T, Wei Y (2011) Angew Chem 123:2569–2573CrossRefGoogle Scholar
  162. Zhang L, Schmitt W (2011) J Am Chem Soc 133:11240–11248CrossRefGoogle Scholar
  163. Zhang Y, Lewis JC, Bergman RG, Ellman JA, Oldfield E (2006) Organometallics 25:3515–3519CrossRefGoogle Scholar
  164. Zhang Z, Sadakane M, Murayama T, Izumi S, Yasuda N, Sakaguchi N, Ueda W (2014) Inorg Chem 53:903–911CrossRefGoogle Scholar
  165. Zhang Z, Sadakane M, Noro S, Murayama T, Kamachi T, Yoshizawa K, Ueda W (2015) J Mater Chem A 3:746–755CrossRefGoogle Scholar
  166. Zhang H, Yang J, Kan W, Liu Y, Ma J (2016) Cryst Growth Des 16:265–276CrossRefGoogle Scholar
  167. Zheng S-T, Zhang J, Yang G-Y (2008) Angew Chem Int Ed 47:3909–3913CrossRefGoogle Scholar
  168. Zhong YR, Cao ML, Mo HJ, Ye BH (2008) Cryst Growth Des 8:2282CrossRefGoogle Scholar
  169. Zhou J, Zhao J-W, Wei Q, Zhang J, Yang G-Y (2014) J Am Chem Soc 136:5065–5071CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Mukul Raizada
    • 1
  • M. Shahid
    • 1
  • Farasha Sama
    • 1
  1. 1.Department of ChemistryAligarh Muslim UniversityAligarhIndia

Personalised recommendations