Advertisement

Fabrication of Polyaniline Supported Nanocomposites and Their Sensing Application for Detection of Environmental Pollutants

  • Mohammad Shahadat
  • Mohammad Oves
  • Abid Hussain Shalla
  • Shaikh Ziauddin Ahammad
  • S. Wazed Ali
  • T. R. Sreekrishnan
Chapter

Abstract

Nanoscale composite materials have played a significant role in sensing of gases, owing to their high surface area, higher mechanical strength with efficient chemical activity as well as cost effective nature. The present chapter deals with synthesis and characterization of Polyaniline (PANI) based nanocomposites ion-exchanger and nanomaterials in addition to their sensing applications in various fields. These nanomaterials have been explored on the basis of advanced techniques of characterizations. Besides the sensing materials, on the basis of ion uptake capacity, these nanocomposite ion-exchange materials can also be used for the treatment of meal ions from industrial wastewaters. This chapter mainly focuses on the synthesis of PANI based nanocomposites and their applications as gas sensors and biosensors. The PANI nanomaterials demonstrated impressive results and outstanding sensing behaviour. It has been found that PANI based nanocomposite materials are not only used for the detection of toxic gases, but, these materials also facilitated immobilization of bioreceptors (e.g., enzymes, antigen–antibodies, and nucleic acids, etc.) for the exposure of biological agents through a combination of biochemical and electrochemical reactions. In future, PANI based nanocomposite materials are expected to open new approaches for demonstrating their outstanding applications in diverse fields.

Keywords

Synthesis Characterization Polyaniline Sensing behavior Biosensors Metal ions 

Notes

Acknowledgement

The authors would like to express their appreciations to Science and Engineering Research Board (DST) fast tract young scientist scheme (SB/FT/CS-122/2014) for providing Postdoctoral Fellowship to Mohammad Shahadat.

References

  1. Abdulla S, Mathew TL, Pullithadathil B (2015) Highly sensitive, room temperature gas sensor based on polyaniline-multiwalled carbon nanotubes (PANI/MWCNTs) nanocomposite for trace-level ammonia detection. Sensors Actuators B Chem 221:1523–1534CrossRefGoogle Scholar
  2. Adams P et al (1996) Low temperature synthesis of high molecular weight polyaniline. Polymer 37(15):3411–3417CrossRefGoogle Scholar
  3. Ampuero S, Bosset J (2003) The electronic nose applied to dairy products: a review. Sensors Actuators B Chem 94(1):1–12CrossRefGoogle Scholar
  4. Ansari MO, Mohammad F (2011) Thermal stability, electrical conductivity and ammonia sensing studies on p-toluenesulfonic acid doped polyaniline: titanium dioxide (pTSA/Pani: TiO2) nanocomposites. Sensors Actuators B Chem 157(1):122–129CrossRefGoogle Scholar
  5. Ansari MO et al (2013) Thermal stability in terms of DC electrical conductivity retention and the efficacy of mixing technique in the preparation of nanocomposites of graphene/polyaniline over the carbon nanotubes/polyaniline. Compos Part B 47:155–161CrossRefGoogle Scholar
  6. Ansari MO et al (2014) Ammonia vapor sensing and electrical properties of fibrous multi-walled carbon nanotube/polyaniline nanocomposites prepared in presence of cetyl-trimethylammonium bromide. J Ind Eng Chem 20(4):2010–2017CrossRefGoogle Scholar
  7. Arrad O, Sasson Y (1989) Commercial ion exchange resins as catalysts in solid-solid-liquid reactions. J Org Chem 54(21):4993–4998CrossRefGoogle Scholar
  8. Arsat R et al (2011) Hydrogen gas sensor based on highly ordered polyaniline/multiwall carbon nanotubes composite. Sens Lett 9(2):940–943CrossRefGoogle Scholar
  9. Athawale AA, Kulkarni MV (2000) Polyaniline and its substituted derivatives as sensor for aliphatic alcohols. Sensors Actuators B Chem 67(1):173–177CrossRefGoogle Scholar
  10. Athawale AA, Bhagwat S, Katre PP (2006) Nanocomposite of Pd–polyaniline as a selective methanol sensor. Sensors Actuators B Chem 114(1):263–267CrossRefGoogle Scholar
  11. Ayad MM, El-Hefnawey G, Torad NL (2009) A sensor of alcohol vapours based on thin polyaniline base film and quartz crystal microbalance. J Hazard Mater 168(1):85–88CrossRefGoogle Scholar
  12. Azim-Araghi M, Jafari M (2010) Electrical and gas sensing properties of polyaniline-chloroaluminium phthalocyanine composite thin films. Eur Phys J Appl Phys 52(01):10402CrossRefGoogle Scholar
  13. Baraton M-I (2008) Sensors for environment, health and security: advanced materials and technologies. Springer, DordrechtGoogle Scholar
  14. Bo Y et al (2011) A novel electrochemical DNA biosensor based on graphene and polyaniline nanowires. Electrochim Acta 56(6):2676–2681CrossRefGoogle Scholar
  15. Bushra R et al (2014) Synthesis, characterization, antimicrobial activity and applications of polyanilineTi (IV) arsenophosphate adsorbent for the analysis of organic and inorganic pollutants. J Hazard Mater 264:481–489Google Scholar
  16. Castro M et al (2009) Carbon nanotubes/poly (ε-caprolactone) composite vapour sensors. Carbon 47(8):1930–1942CrossRefGoogle Scholar
  17. Cavallo P et al (2015) Understanding the sensing mechanism of polyaniline resistive sensors. Effect of humidity on sensing of organic volatiles. Sensors Actuators B Chem 210:574–580CrossRefGoogle Scholar
  18. Chaudhary V, Kaur A (2015) Enhanced room temperature sulfur dioxide sensing behaviour of in situ polymerized polyaniline–tungsten oxide nanocomposite possessing honeycomb morphology. RSC Adv 5(90):73535–73544CrossRefGoogle Scholar
  19. Choudhury A (2009) Polyaniline/silver nanocomposites: dielectric properties and ethanol vapour sensitivity. Sensors Actuators B Chem 138(1):318–325CrossRefGoogle Scholar
  20. Clark LC, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102(1):29–45CrossRefGoogle Scholar
  21. Conn C et al (1998) A polyaniline-based selective hydrogen sensor. Electroanalysis 10(16):1137–1141CrossRefGoogle Scholar
  22. Crowley K et al (2010) Fabrication of polyaniline-based gas sensors using piezoelectric inkjet and screen printing for the detection of hydrogen sulfide. Sens J IEEE 10(9):1419–1426CrossRefGoogle Scholar
  23. Deshpande N et al (2009) Studies on tin oxide-intercalated polyaniline nanocomposite for ammonia gas sensing applications. Sensors Actuators B Chem 138(1):76–84CrossRefGoogle Scholar
  24. Dey A et al (2012) Mediator free highly sensitive polyaniline–gold hybrid nanocomposite based immunosensor for prostate-specific antigen (PSA) detection. J Mater Chem 22(29):14763–14772CrossRefGoogle Scholar
  25. Dhand C et al (2011) Recent advances in polyaniline based biosensors. Biosens Bioelectron 26(6):2811–2821CrossRefGoogle Scholar
  26. Dhawale D et al (2008) Room temperature liquefied petroleum gas (LPG) sensor based on p-polyaniline/n-TiO2 heterojunction. Sensors Actuators B Chem 134(2):988–992CrossRefGoogle Scholar
  27. Dhawale D et al (2010a) Room temperature LPG sensor based on n-CdS/p-polyaniline heterojunction. Sensors Actuators B Chem 145(1):205–210CrossRefGoogle Scholar
  28. Dhawale D et al (2010b) Room temperature liquefied petroleum gas (LPG) sensor. Sensors Actuators B Chem 147(2):488–494CrossRefGoogle Scholar
  29. Dhingra M et al (2013) Impact of interfacial interactions on optical and ammonia sensing in zinc oxide/polyaniline structures. Bull Mater Sci 36(4):647–652CrossRefGoogle Scholar
  30. Di W, Ivaska A (2006) Electrochemical biosensors based on polyaniline. Chem Anal 51(6):839–852Google Scholar
  31. Diggikar RS et al (2013) Formation of multifunctional nanocomposites with ultrathin layers of polyaniline (PANI) on silver vanadium oxide (SVO) nanospheres by in situ polymerization. J Mater Chem A 1(12):3992–4001CrossRefGoogle Scholar
  32. Dimitriev O (2003) Interaction of polyaniline and transition metal salts: formation of macromolecular complexes. Polym Bull 50(1–2):83–90CrossRefGoogle Scholar
  33. Docquier N, Candel S (2002) Combustion control and sensors: a review. Prog Energy Combust Sci 28(2):107–150CrossRefGoogle Scholar
  34. Du M et al (2012) Fabrication of DNA/graphene/polyaniline nanocomplex for label-free voltammetric detection of DNA hybridization. Talanta 88:439–444CrossRefGoogle Scholar
  35. Dubbe A (2003) Fundamentals of solid state ionic micro gas sensors. Sensors Actuators B Chem 88(2):138–148CrossRefGoogle Scholar
  36. Feng J, MacDiarmid A (1999) Sensors using octaaniline for volatile organic compounds. Synth Met 102(1):1304–1305CrossRefGoogle Scholar
  37. Fu L, Yu A (2014) Carbon nanotubes based thin films: fabrication, characterization and applications. Rev Adv Mater Sci 36:40–61Google Scholar
  38. Fuke MV et al (2008) Evaluation of co-polyaniline nanocomposite thin films as humidity sensor. Talanta 76(5):1035–1040CrossRefGoogle Scholar
  39. Fuke MV et al (2009) Ag-polyaniline nanocomposite cladded planar optical waveguide based humidity sensor. J Mater Sci Mater Electron 20(8):695–703CrossRefGoogle Scholar
  40. Gangopadhyay R, De A (2000) Conducting polymer nanocomposites: a brief overview. Chem Mater 12(3):608–622CrossRefGoogle Scholar
  41. Genies E et al (1990) Polyaniline: a historical survey. Synth Met 36(2):139–182CrossRefGoogle Scholar
  42. Gopalan AI et al (2009) An electrochemical glucose biosensor exploiting a polyaniline grafted multiwalled carbon nanotube/perfluorosulfonate ionomer–silica nanocomposite. Biomaterials 30(30):5999–6005CrossRefGoogle Scholar
  43. Hasan M et al (2015) Ammonia sensing and DC electrical conductivity studies of p-toluene sulfonic acid doped cetyltrimethylammonium bromide assisted V2O5@ polyaniline composite nanofibers. J Ind Eng Chem 22:147–152CrossRefGoogle Scholar
  44. Hoa D et al (1992) A biosensor based on conducting polymers. Anal Chem 64(21):2645–2646CrossRefGoogle Scholar
  45. Hsu YF et al (2008) Undoped p-type ZnO Nanorods synthesized by a hydrothermal method. Adv Funct Mater 18(7):1020–1030CrossRefGoogle Scholar
  46. Hu H et al (2002) Adsorption kinetics of optochemical NH 3 gas sensing with semiconductor polyaniline films. Sensors Actuators B Chem 82(1):14–23CrossRefGoogle Scholar
  47. Huang W-S, Humphrey BD, MacDiarmid AG (1986) Polyaniline, a novel conducting polymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes. J Chem Soc Faraday Trans 82(8):2385–2400CrossRefGoogle Scholar
  48. Huang J et al (2011) Electrochemical immunosensor based on polyaniline/poly (acrylic acid) and Au-hybrid graphene nanocomposite for sensitivity enhanced detection of salbutamol. Food Res Int 44(1):92–97CrossRefGoogle Scholar
  49. Imisides M, John R, Wallace G (1996) Microsensors based on conducting polymers. ChemTech 26(5):19–25Google Scholar
  50. Jain S et al (2003) Humidity sensing with weak acid-doped polyaniline and its composites. Sensors Actuators B Chem 96(1):124–129CrossRefGoogle Scholar
  51. Joshi S, Lokhande C, Han S-H (2007) A room temperature liquefied petroleum gas sensor based on all-electrodeposited n-CdSe/p-polyaniline junction. Sensors Actuators B Chem 123(1):240–245CrossRefGoogle Scholar
  52. Kaur B, Srivastava R (2015) Simultaneous determination of epinephrine, paracetamol, and folic acid using transition metal ion-exchanged polyaniline–zeolite organic–inorganic hybrid materials. Sensors Actuators B Chem 211:476–488CrossRefGoogle Scholar
  53. Khan AA (2006) Applications of Hg (II) sensitive polyaniline Sn (IV) phosphate composite cation-exchange material in determination of Hg2+ from aqueous solutions and in making ion-selective membrane electrode. Sensors Actuators B Chem 120(1):10–18CrossRefGoogle Scholar
  54. Khan AA, Baig U (2013a) Electrical conductivity and ammonia sensing studies on in situ polymerized poly (3-methythiophene)–titanium (IV) molybdophosphate cation exchange nanocomposite. Sensors Actuators B Chem 177:1089–1097CrossRefGoogle Scholar
  55. Khan AA, Baig U (2013b) Electrical conductivity and humidity sensing studies on synthetic organic–inorganic poly-o-toluidine–titanium (IV) phosphate cation exchange nanocomposite. Solid State Sci 15:47–52CrossRefGoogle Scholar
  56. Khan AA, Khalid M, Niwas R (2010a) Humidity and ammonia vapor sensing applications of polyaniline–polyacrylonitrile composite films. Sci Adv Mater 2(4):474–480CrossRefGoogle Scholar
  57. Khan AA, Khalid M, Baig U (2010b) Synthesis and characterization of polyaniline–titanium (IV) phosphate cation exchange composite: methanol sensor and isothermal stability in terms of DC electrical conductivity. React Funct Polym 70(10):849–855CrossRefGoogle Scholar
  58. Khan AA, Baig U, Khalid M (2011) Ammonia vapor sensing properties of polyaniline–titanium (IV) phosphate cation exchange nanocomposite. J Hazard Mater 186(2):2037–2042CrossRefGoogle Scholar
  59. Khan AA, Baig U, Khalid M (2013a) Electrically conductive polyaniline-titanium (IV) molybdophosphate cation exchange nanocomposite: synthesis, characterization and alcohol vapour sensing properties. J Ind Eng Chem 19(4):1226–1233CrossRefGoogle Scholar
  60. Khan AA et al (2013b) Ion-exchange and humidity sensing properties of poly-o-anisidine sn (IV) arsenophosphate nano-composite cation-exchanger. J Environ Chem Eng 1(3):310–319CrossRefGoogle Scholar
  61. Khuspe G et al (2013) Ammonia gas sensing properties of CSA doped PANi-SnO2 nanohybrid thin films. Synth Met 185:1–8Google Scholar
  62. Kim I et al (2010) Gas sensor for CO and NH 3 using polyaniline/CNTs composite at room temperature. In: Nanotechnology (IEEE-NANO), 10th IEEE conference on 2010, IEEEGoogle Scholar
  63. Koul S, Chandra R (2005) Mixed dopant conducting polyaniline reusable blend for the detection of aqueous ammonia. Sensors Actuators B Chem 104(1):57–67CrossRefGoogle Scholar
  64. Le TH et al (2013) Electrosynthesis of polyaniline–mutilwalled carbon nanotube nanocomposite films in the presence of sodium dodecyl sulfate for glucose biosensing. Adv Nat Sci Nanosci Nanotechnol 4(2):025014CrossRefGoogle Scholar
  65. Li Z-F et al (2013a) Understanding the response of nanostructured polyaniline gas sensors. Sensors Actuators B Chem 183:419–427CrossRefGoogle Scholar
  66. Li J et al (2013b) Electrochemical immunosensor based on graphene–polyaniline composites and carboxylated graphene oxide for estradiol detection. Sensors Actuators B Chem 188:99–105CrossRefGoogle Scholar
  67. Lin M et al (2012) Electrochemical immunoassay of benzo [a] pyrene based on dual amplification strategy of electron-accelerated Fe3O4/polyaniline platform and multi-enzyme-functionalized carbon sphere label. Anal Chim Acta 722:100–106CrossRefGoogle Scholar
  68. Liu P-Z et al (2013) Electrochemiluminescence immunosensor based on graphene oxide nanosheets/polyaniline nanowires/CdSe quantum dots nanocomposites for ultrasensitive determination of human interleukin-6. Electrochim Acta 113:176–180CrossRefGoogle Scholar
  69. Lowe CR (1984) Biosensors. Trends Biotechnol 2(3):59–65CrossRefGoogle Scholar
  70. Malinauskas A et al (2004) Electrochemical response of ascorbic acid at conducting and electrogenerated polymer modified electrodes for electroanalytical applications: a review. Talanta 64(1):121–129CrossRefGoogle Scholar
  71. Matsuguchi M et al (2002) Effect of NH 3 gas on the electrical conductivity of polyaniline blend films. Synth Met 128(1):15–19CrossRefGoogle Scholar
  72. Muhammad-Tahir Z, Alocilja EC (2003) A conductometric biosensor for biosecurity. Biosens Bioelectron 18(5):813–819CrossRefGoogle Scholar
  73. Nabi S et al (2010) Development of composite ion-exchange adsorbent for pollutants removal from environmental wastes. Chem Eng J 165(2):405–412CrossRefGoogle Scholar
  74. Nabi S et al (2011a) Synthesis and characterization of nano-composite ion-exchanger; its adsorption behavior. Colloids Surf B: Biointerfaces 87(1):122–128CrossRefGoogle Scholar
  75. Nabi S et al (2011b) Heavy-metals separation from industrial effluent, natural water as well as from synthetic mixture using synthesized novel composite adsorbent. Chem Eng J 175:8–16CrossRefGoogle Scholar
  76. Nabi S et al (2011c) Synthesis and characterization of polyanilineZr (IV) sulphosalicylate composite and its applications (1) electrical conductivity, and (2) antimicrobial activity studies. Chem Eng J 173(3):706–714CrossRefGoogle Scholar
  77. Navale S et al (2014) Camphor sulfonic acid doped PPy/α-Fe2O3 hybrid nanocomposites as NO2 sensors. RSC Adv 4(53):27998–28004CrossRefGoogle Scholar
  78. Novák P et al (1997) Electrochemically active polymers for rechargeable batteries. Chem Rev 97(1):207–282CrossRefGoogle Scholar
  79. Ozdemir C et al (2010) Electrochemical glucose biosensing by pyranose oxidase immobilized in gold nanoparticle-polyaniline/AgCl/gelatin nanocomposite matrix. Food Chem 119(1):380–385CrossRefGoogle Scholar
  80. Parvatikar N et al (2006) Electrical and humidity sensing properties of polyaniline/WO3 composites. Sensors Actuators B Chem 114(2):599–603CrossRefGoogle Scholar
  81. Patil S et al (2011) Fabrication of polyaniline-ZnO nanocomposite gas sensor. Sens Transducer 134(11):120Google Scholar
  82. Pawar S et al (2011) Fabrication of polyaniline/TiO2 nanocomposite ammonia vapor sensor. J Nano Electron Phys 3(1):1056Google Scholar
  83. Prabhakar N et al (2008) Improved electrochemical nucleic acid biosensor based on polyaniline-polyvinyl sulphonate. Electrochim Acta 53(12):4344–4350CrossRefGoogle Scholar
  84. Prathap MA, Srivastava R, Satpati B (2013) Simultaneous detection of guanine, adenine, thymine, and cytosine at polyaniline/MnO2 modified electrode. Electrochim Acta 114:285–295CrossRefGoogle Scholar
  85. Radhakrishnan S et al (2013) Polypyrrole nanotubes–polyaniline composite for DNA detection using methylene blue as intercalator. Anal Methods 5(4):1010–1015CrossRefGoogle Scholar
  86. Raj AD et al (2010) Self assembled V2O5 nanorods for gas sensors. Curr Appl Phys 10(2):531–537CrossRefGoogle Scholar
  87. Ram MK, Yavuz O, Aldissi M (2005a) NO2 gas sensing based on ordered ultrathin films of conducting polymer and its nanocomposite. Synth Met 151(1):77–84CrossRefGoogle Scholar
  88. Ram MK et al (2005b) CO gas sensing from ultrathin nano-composite conducting polymer film. Sensors Actuators B Chem 106(2):750–757CrossRefGoogle Scholar
  89. Raman NK, Anderson MT, Brinker CJ (1996) Template-based approaches to the preparation of amorphous, nanoporous silicas. Chem Mater 8(8):1682–1701CrossRefGoogle Scholar
  90. Raut B et al (2012) Novel method for fabrication of polyaniline–CdS sensor for H2S gas detection. Measurement 45(1):94–100CrossRefGoogle Scholar
  91. Riegel J, Neumann H, Wiedenmann H-M (2002) Exhaust gas sensors for automotive emission control. Solid State Ionics 152:783–800CrossRefGoogle Scholar
  92. Rujisamphan N et al (2016) Co-sputtered metal and polymer nanocomposite films and their electrical responses for gas sensing application. Appl Surf Sci 368:114–121CrossRefGoogle Scholar
  93. Sadek A et al (2006) A layered surface acoustic wave gas sensor based on a polyaniline/In2O3 nanofibre composite. Nanotechnology 17(17):4488CrossRefGoogle Scholar
  94. Sadek A et al (2008) A polyaniline/WO3 nanofiber composite-based ZnO/64 YX LiNbO3 SAW hydrogen gas sensor. Synth Met 158(1):29–32CrossRefGoogle Scholar
  95. Sajjan K et al (2013) Humidity sensing property of polyaniline-cromium oxide nanocomposites. In: Proceeding of international conference on recent trends in applied physics and material science: RAM 2013, AIP PublishingGoogle Scholar
  96. Santhanam K, Gupta N (1993) Conducting-polymer electrodes in batteries. TRIP 1:284–289Google Scholar
  97. Sarfraz J et al (2013) Printed hydrogen sulfide gas sensor on paper substrate based on polyaniline composite. Thin Solid Films 534:621–628CrossRefGoogle Scholar
  98. Sen T et al (2014) Polyaniline/γ-Fe2O3 nanocomposite for room temperature LPG sensing. Sensors Actuators B Chem 190:120–126CrossRefGoogle Scholar
  99. Shahadat M et al (2012) Synthesis, characterization, photolytic degradation, electrical conductivity and applications of a nanocomposite adsorbent for the treatment of pollutants. RSC Adv 2(18):7207–7220CrossRefGoogle Scholar
  100. Shahadat M et al (2015) Titanium-based nanocomposite materials: a review of recent advances and perspectives. Colloids Surf B: Biointerfaces 126:121–137CrossRefGoogle Scholar
  101. Shahadat M et al (2017) A critical review on the prospect of polyaniline-grafted biodegradable nanocomposite. Adv Colloid Interf Sci 249:2–16CrossRefGoogle Scholar
  102. Sharma S et al (2002) Chloroform vapour sensor based on copper/polyaniline nanocomposite. Sensors Actuators B Chem 85(1):131–136CrossRefGoogle Scholar
  103. Shirsat MD et al (2009) Polyaniline nanowires-gold nanoparticles hybrid network based chemiresistive hydrogen sulfide sensor. Appl Phys Lett 94(8):083502CrossRefGoogle Scholar
  104. Shukla S et al (2012) Fabrication of electro-chemical humidity sensor based on zinc oxide/polyaniline nanocomposites. Adv Mater Lett 3(5):421–425CrossRefGoogle Scholar
  105. Singh V et al (2008) Synthesis and characterization of polyaniline–carboxylated PVC composites: application in development of ammonia sensor. Sensors Actuators B Chem 132(1):99–106CrossRefGoogle Scholar
  106. Singla M, Awasthi S, Srivastava A (2007) Humidity sensing; using polyaniline/Mn3O4 composite doped with organic/inorganic acids. Sensors Actuators B Chem 127(2):580–585CrossRefGoogle Scholar
  107. Spain E et al (2011) High sensitivity DNA detection using gold nanoparticle functionalised polyaniline nanofibres. Biosens Bioelectron 26(5):2613–2618CrossRefGoogle Scholar
  108. Spain E, Keyes TE, Forster RJ (2013) Vapour phase polymerised polyaniline–gold nanoparticle composites for DNA detection. J Electroanal Chem 711:38–44CrossRefGoogle Scholar
  109. Srivastava S et al (2010) TiO2/PANI And MWNT/PANI composites thin films For hydrogen gas sensing. In: AIP conference proceedingsGoogle Scholar
  110. Sun X, Qiao L, Wang X (2013) A novel immunosensor based on Au nanoparticles and polyaniline/multiwall carbon nanotubes/chitosan nanocomposite film functionalized interface. Nano-Micro Lett 5(3):191–201CrossRefGoogle Scholar
  111. Sutar D et al (2007) Preparation of nanofibrous polyaniline films and their application as ammonia gas sensor. Sensors Actuators B Chem 128(1):286–292CrossRefGoogle Scholar
  112. Syed AA, Dinesan MK (1991) Review: polyaniline – a novel polymeric material. Talanta 38(8):815–837CrossRefGoogle Scholar
  113. Tai H et al (2007) Fabrication and gas sensitivity of polyaniline–titanium dioxide nanocomposite thin film. Sensors Actuators B Chem 125(2):644–650CrossRefGoogle Scholar
  114. Tovide O et al (2014) Graphenated polyaniline-doped tungsten oxide nanocomposite sensor for real time determination of phenanthrene. Electrochim Acta 128:138–148CrossRefGoogle Scholar
  115. Vatutsina O et al (2007) A new hybrid (polymer/inorganic) fibrous sorbent for arsenic removal from drinking water. React Funct Polym 67(3):184–201CrossRefGoogle Scholar
  116. Verma SK et al (2015) Poly (m-aminophenol)/functionalized multi-walled carbon nanotube nanocomposite based alcohol sensors. Sensors Actuators B Chem 219:199–208CrossRefGoogle Scholar
  117. Vijayan A et al (2008) Optical fibre based humidity sensor using co-polyaniline clad. Sensors Actuators B Chem 129(1):106–112CrossRefGoogle Scholar
  118. Wang X et al (2012) Synthesis of nestlike ZnO hierarchically porous structures and analysis of their gas sensing properties. ACS Appl Mater Interfaces 4(2):817–825CrossRefGoogle Scholar
  119. Wang L et al (2014) Graphene sheets, polyaniline and AuNPs based DNA sensor for electrochemical determination of BCR/ABL fusion gene with functional hairpin probe. Biosens Bioelectron 51:201–207CrossRefGoogle Scholar
  120. Wilson J et al (2012) Polypyrrole–polyaniline–Au (PPy–PANi–Au) nano composite films for label-free electrochemical DNA sensing. Sensors Actuators B Chem 171:216–222CrossRefGoogle Scholar
  121. Wu J et al (2005) A biosensor monitoring DNA hybridization based on polyaniline intercalated graphite oxide nanocomposite. Sensors Actuators B Chem 104(1):43–49CrossRefGoogle Scholar
  122. Xian Y et al (2006) Glucose biosensor based on Au nanoparticles–conductive polyaniline nanocomposite. Biosens Bioelectron 21(10):1996–2000CrossRefGoogle Scholar
  123. Xu D-M et al (2013a) Multilayer films of layered double hydroxide/polyaniline and their ammonia sensing behavior. J Hazard Mater 262:64–70CrossRefGoogle Scholar
  124. Xu H et al (2013b) NO 2 gas sensing with SnO 2–ZnO/PANI composite thick film fabricated from porous nanosolid. Sensors Actuators B Chem 176:166–173CrossRefGoogle Scholar
  125. Yan X et al (2009) Preparation and characterization of polyaniline/indium (III) oxide (PANi/In2O3) nanocomposite thin film. In: 4th international symposium on advanced optical manufacturing and testing technologies: advanced optical manufacturing technologies. International Society for Optics and PhotonicsGoogle Scholar
  126. Yang T et al (2009) Synergistically improved sensitivity for the detection of specific DNA sequences using polyaniline nanofibers and multi-walled carbon nanotubes composites. Biosens Bioelectron 24(7):2165–2170CrossRefGoogle Scholar
  127. Yang J, Wang X, Shi H (2012) An electrochemical DNA biosensor for highly sensitive detection of phosphinothricin acetyltransferase gene sequence based on polyaniline-(mesoporous nanozirconia)/poly-tyrosine film. Sensors Actuators B Chem 162(1):178–183CrossRefGoogle Scholar
  128. Yun J, Jeon S, Kim H-I (2013) Improvement of NO gas sensing properties of polyaniline/MWCNT composite by photocatalytic effect of TiO2. J Nanomater 2013:3CrossRefGoogle Scholar
  129. Zhang H-D et al (2014) High-sensitivity gas sensors based on arranged polyaniline/PMMA composite fibers. Sensors Actuators A Phys 219:123–127CrossRefGoogle Scholar
  130. Zhihua L et al (2016) Fast response ammonia sensor based on porous thin film of polyaniline/sulfonated nickel phthalocyanine composites. Sensors Actuators B Chem 226:553–562CrossRefGoogle Scholar
  131. Zhong H et al (2011) In situ chemo-synthesized multi-wall carbon nanotube-conductive polyaniline nanocomposites: characterization and application for a glucose amperometric biosensor. Talanta 85(1):104–111CrossRefGoogle Scholar
  132. Zhu J et al (2015) Preparation of polyaniline–TiO2 nanotube composite for the development of electrochemical biosensors. Sensors Actuators B Chem 221:450–457CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Mohammad Shahadat
    • 1
    • 2
  • Mohammad Oves
    • 3
  • Abid Hussain Shalla
    • 4
  • Shaikh Ziauddin Ahammad
    • 1
  • S. Wazed Ali
    • 2
  • T. R. Sreekrishnan
    • 1
  1. 1.Department of Biochemical Engineering and BiotechnologyIndian Institute of Technology DelhiNew DelhiIndia
  2. 2.Department of Textile TechnologyIndian Institute of Technology DelhiNew DelhiIndia
  3. 3.Centre of Excellence in Environmental StudiesKing Abdul Aziz UniversityJeddahSaudi Arabia
  4. 4.Department of ChemistryIslamic University of Science & Technology (IUST)PulwamaIndia

Personalised recommendations