Advertisement

Microbial Electrochemical Cell: An Emerging Technology for Waste Water Treatment and Carbon Sequestration

  • Abdul Hakeem Anwer
  • Mohammad Danish Khan
  • Mohammad Zain Khan
  • Rajkumar Joshi
Chapter

Abstract

Recently, treatment of waste water using biofuel technology has gained more attention because of its bio-sustainable resource by generating powering microbes (electrical energy) which exponentially reducing dependence of fossil fuels. In the last one decade, one of the bioelectro-chemical approach; microbial electrolysis cell (MEC) has been developed to treat waste water and energy production. It is considered as a potential green technology to tackle the issues of energy shortage and global warming. This technique employs conversion of waste water (which contain organic matter) into hydrogen or a variety of value-added products (acetate, hydrogen peroxide, methane, ethanol) via electrochemically active bacteria (electrogenes). Significant outcomes of MECs offers a new solution to emerging environmental issues related to waste water treatment, energy and resource recovery as well. In future, it is expected that treatment of industrial waste water using MECs has become a promising renewable green technology to manage waste water and biofuels production. The present chapter mainly reviews utilization of various polymer-based electrode materials in MECs for treatment of waste water along with their future potential substrates. 

Keywords

Bioelectrochemical system Biofuel Greenhouse gas Hydrogen production rates Microbial electrolysis cell Waste water treatment 

References

  1. Ajayi FF, Kim KY, Chae KJ, Choi MJ, Kim IS (2010) Effect of hydrodynamic force and prolonged oxygen exposure on the performance of anodic biofilm in microbial electrolysis cells. Int J Hydrog Energy 35(8):3206–3213CrossRefGoogle Scholar
  2. Badwal SPS (2014) Emerging electrochemical energy conversion and storage technologies. Front Chem 2:79. Bibcode:2014FrCh....2...79B.  https://doi.org/10.3389/fchem.2014.00079. PMC 4174133 Freely accessible
  3. Call D, Logan BE (2008) Hydrogen production in a single chamber microbial electrolysis cell (MEC) lacking a membrane. Environ Sci Technol 42:3401–3406CrossRefGoogle Scholar
  4. Call DF, Logan BE (2011) A method for high throughput bioelectrochemical research based on small scale microbial electrolysis cells. Biosens Bioelectron 26:4526–4531CrossRefGoogle Scholar
  5. Call DF, Merrill MD, Logan BE (2009) High surface area stainless steel brushes ascathodes in microbial electrolysis cells. Environ Sci Technol 43:2179e83CrossRefGoogle Scholar
  6. Chae KJ, Choi MJ, Lee J, Arayi FF, Kim IS (2008) Biohydrogen production viabiocatalyzed electrolysis in acetate-fed bioelectrochemical cells and microbial community analysis. Int J Hydrog Energy 33:5184e92CrossRefGoogle Scholar
  7. Chae KJ, Choi MJ, Kim KY, Ajayi FF, Chang IS, Kim IS (2009) A solar-powered microbial electrolysis cell with a platinum catalyst-free cathode to produce hydrogen. Environ Sci Technol 43:9525–9530CrossRefGoogle Scholar
  8. Cheng S, Logan BE (2007a) Sustainable and efficient biohydrogen production via electrohydrogenesis. Proc Natl Acad Sci U S A 104:18871–18873CrossRefGoogle Scholar
  9. Cheng S, Logan BE (2007b) Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochem Commun 9:492–496CrossRefGoogle Scholar
  10. Cheng S, Logan BE (2011) High hydrogen production rate of microbial electrolysis cell (MEC) with reduced electrode spacing. Bioresour Technol 102:3571–3574CrossRefGoogle Scholar
  11. Cheng S, Liu H, Logan BE (2006a) Increased performance of single chamber microbial fuel cells using an improved cathode structure. Electrochem Commun 8:489–494CrossRefGoogle Scholar
  12. Cheng S, Liu H, Logan BE (2006b) Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuelcells. Environ Sci Technol 40:364–369CrossRefGoogle Scholar
  13. Cheng S, Xing D, Call DF, Logan BE (2009) Direct biological conversion of electrical current into methane by electro methanogenesis. Environ Sci Technol 43(10):3953–3958CrossRefGoogle Scholar
  14. Clauwaert P, Verstraete W (2009) Methanogenesis in membraneless microbial electrolysis cells. Appl Microbiol Biotechnol 82(5):829–836CrossRefGoogle Scholar
  15. Clauwaert P, Toledo R, van der Ha D, Crab R et al (2008) Combining biocatalyzed electrolysis with anaerobic digestion. Water Sci Technol 57(4):575–579CrossRefGoogle Scholar
  16. Cusick RD, Kiely PD, Logan BE (2010) A monetary comparison of energy recovered from microbial fuel cells and microbial electrolysis cells fed winery or domestic waste waters. Int J Hydrog Energy 35:8855–8861CrossRefGoogle Scholar
  17. Cusick RD, Bryan B, Parker DS, Merrill MD, Mehanna M et al (2011) Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater. Appl Microbiol Biotechnol 89:2053e63CrossRefGoogle Scholar
  18. Ditzig J, Liu H, Logan BE (2007) Production of hydrogen from domestic waste water using a bioelectrochemically assisted microbial reactor (BEAMR). Int J Hydrog Energy 32(13):2296–2304CrossRefGoogle Scholar
  19. Energy Information Administration. International energy outlook (2013). http://www.eia.doe.gov/oiaf/ieo/index.html
  20. Foley JM, Rozendal RA, Hertle CK, Lant PA, Rabaey K (2010) Life cycle assessment of high rate anaerobic treatment, microbial fuel cells, and microbial electrolysis cells. Environ Sci Technol 44(9):3629–3637CrossRefGoogle Scholar
  21. Freguia S, Rabaey K, Yuan Z, Keller J (2007) Non-catalyzed cathodic oxygen reduction at graphite granules in microbial fuel cells. Electrochim Acta 53:598–603CrossRefGoogle Scholar
  22. Gil-Carrera L, Escapa A, Carracedo B, Mora’n A, Gomez X (2013) Performance of a semi-pilot tubular microbial electrolysis cell (MEC) under several hydraulic retention times and applied voltages. Bioresour Technol 146:63–69CrossRefGoogle Scholar
  23. Guoa K, Tang X, Du Z, Li H (2010) Hydrogen production from acetate in a cathode-on-top single chamber microbial electrolysis cell with a mipor cathode. Biochem Eng J 51:48e52Google Scholar
  24. Hoekstra AY, Chapagain AK, Aldaya MM, Mekonnen MM (2011) The water footprint assessment manual: setting the global standard. Earthscan, London/Washington, DC. waterfootprint.org/media/downloads/TheWaterFootprintAssessmentManual_2pdfGoogle Scholar
  25. Hu H, Fan Y, Liu H (2008) Hydrogen production using single-chamber membrane-free microbial electrolysis cells. Water Res 42:4172e8CrossRefGoogle Scholar
  26. Hu H, Fan Y, Liu H (2009) Hydrogen production in single-chamber tubular microbial electrolysis cells using non-precious metal catalysts. Int J Hydrogen Energy:8535e42Google Scholar
  27. Jeremiasse AW, Hamelers HV, Kleijn JM (2009) Buisman CJN. Use of biocompatible buffers to reduce the concentration overpotential for hydrogen evolution. Environ Sci Technol 43(17):6882–6887CrossRefGoogle Scholar
  28. Jeremiasse AW, Hamelers HVM, Saakes M, Buisman CJN (2010) Ni foam cathode enables high volumetric H2 production in a microbial electrolysis cell. Int J Hydrog Energy 35:12716e23CrossRefGoogle Scholar
  29. Khan MZ, Singh S, Sultana S et al (2015a) Studies on the biodegradation of two different azo dyes in bioelectrochemical systems. New J Chem 39:5597–5604CrossRefGoogle Scholar
  30. Khan MD, Abdulateif H, Ismail IM, Sabir S, Khan MZ (2015b) Bioelectricity generation and bioremediation of an azo-dye in a microbial fuel cell coupled activated sludge process. PLoS One 10:e0138448CrossRefGoogle Scholar
  31. Khan MD, Khan N, Sultana S, Joshi R, Ahmed S, Yu E, Scott K, Ahmad A, Khan MZ (2017a) Bioelectrochemical conversion of waste to energy using microbial fuel cell technology. Proc Biochem 57:141–158CrossRefGoogle Scholar
  32. Khan N, Khan MD, Sultana S, Khan MZ, Ahmad A (2017b) Bioelectrochemical systems for transforming waste to energy. Modern age environmental problems and their remediation.  https://doi.org/10.1007/978-3-319-64501-8 Google Scholar
  33. Khan MD, Khan N, Sultana S, Khan MZ, Sabir S, Azam A (2018) Microbial fuel cell: waste minimization and energy generation. Modern age environmental problems and their remediation.  https://doi.org/10.1007/978-3-319-64501-8_8 Google Scholar
  34. Khanal KS, Surampali YR, Zhang PB et al (2010) Bioenergy and biofuels from biowastes and biomass. EWRI of ASCE,USAGoogle Scholar
  35. Lalaurette E, Thammannagowda S, Mohagheghi A, Maness P-C, Logan BE (2009) Hydrogenproduction from cellulose in a two-stage process combining fermentation and electrohydrogenesis. Int J Hydrog Energy 34:6201–6210CrossRefGoogle Scholar
  36. Lee HS, Rittmann BE (2009) Significance of biological hydrogen oxidation in a continuous single chamber microbial electrolysis cell. Environ Sci Technol 44(3):948–954CrossRefGoogle Scholar
  37. Liang DW, Peng SK, Lu SF, Liu YY, Lan F, Xiang Y (2011) Enhancement of hydrogen production in a single chamber microbial electrolysis cell through anode arrangement optimization. Bioresour Technol 102(23):10881–10885CrossRefGoogle Scholar
  38. Lijiao R, Michael S, Ivan I et al (2013) Treatability studies on different refinery wastewater samples using highthroughput microbial electrolysis cells (MECs). Bioresour Technol 136:322e8Google Scholar
  39. Liu H, Grot S, Logan BE (2005a) Electrochemically assisted microbial production of hydrogen from acetate. Environ Sci Technol 39:4317–4320CrossRefGoogle Scholar
  40. Liu H, Grot S, Logan BE (2005b) Electrochemically assisted production of hydrogen from acetate. Environ Sci Technol 39:4317–4320CrossRefGoogle Scholar
  41. Liu YP, Wang YH, Wang BS, Chen QY (2014) Effect of anolyte pH and cathode Pt loading on electricity and hydrogen co-production performance of the bioelectrochemical system. Int J Hydrog Energy 39(26):14191–14195CrossRefGoogle Scholar
  42. Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181–5192CrossRefGoogle Scholar
  43. Logan BE, Cheng S, Watson V, Estadt (2007) Graphite fiber brush anodes for increased power production in air cathode microbial fuel cells. Environ Sci Technol 41:3341–3346CrossRefGoogle Scholar
  44. Logan BE, Call D, Cheng S, Hamelers HV et al (2008) Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ Sci Technol 42:8630–8640CrossRefGoogle Scholar
  45. Lu L, Xing D, Xie T, Ren N, Logan BE (2010) Hydrogen production from proteins via electrohydrogenesis in microbial electrolysis cells. Biosens Bioelectron 25:2690e5CrossRefGoogle Scholar
  46. Lu L, Ren N, Zhao X, Wang H, Wu D, Xing D (2011) Hydrogen production, methanogen inhibition and microbial community structures in psychrophilic single-chamber microbial electrolysis cells. Energy Environ Sci 4(4):1329–1336CrossRefGoogle Scholar
  47. Lu L, Xing D, Ren N, Logan BE (2012) Syntrophic interactions drive the hydrogen production from glucose at low temperature in microbial electrolysis cells. Bioresour Technol 124:68e76Google Scholar
  48. Meda US (2015) Bio-hydrogen production in microbial electrolysiscell using waste water from sugar industry. Int J Eng Sci Res Technol 4:452–458Google Scholar
  49. Mekonnen MM, Hoekstra AY (2011) National Water Footprint Accounts: the green, blue and Grey water footprint of production and consumption. UNESCO-IHE Institute for Water Education, Delft, The Netherlands. Waterfootprint.org/media/downloads/Report50- National Water Footprints Vol1.pdfGoogle Scholar
  50. Merrill MD, Logan BE (2009) Electrolyte effects on hydrogen evolution and solution resistance in microbial electrolysis cells. J Power Sources 191:203–208CrossRefGoogle Scholar
  51. Miandad R, Rehan M, Ouda OKM, Khan MZ, Shahzad K, Ismail IMI, Nizami AS (2017) Waste-to-hydrogen energy in Saudi Arabia: challenges and perspectives: in biohydrogen production: sustainability of current technology and future perspective, vol 23. Springer, New Delhi, pp 7–252Google Scholar
  52. Munoz LD, Erable B, Etcheverry L, Riess J, Basséguy R, Berge A (2010) Combining phosphate species and stainless steel cathode to enhance hydrogen evolution in microbialelectrolysis cell (MEC). Electrochem Commun 12:183–186CrossRefGoogle Scholar
  53. Nevin KP, Woodard TL, Franks AE, Summers ZM, Lovley DR (2010) Microbial electrosynthesis feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. MBio 1(2):e00103–e00110CrossRefGoogle Scholar
  54. Nidheesh PV, Gandhimathi R, Ramesh ST (2013) Degradation of dyes from aqueous solution byFenton processes: a review. Environ Sci Pollut Res 20:2099–2132CrossRefGoogle Scholar
  55. Nizami AS, Shahzad K, Rehan M, Ouda OKM, Khan MZ, Ismail IMI (2017) Developing waste biorefineryA in Makkah: a way forward to convert urban waste into renewable energy. Appl Energy 186:189–196CrossRefGoogle Scholar
  56. Omidi H, Sathasivan A (2013) Optimal temperature for microbes in an acetate fed microbial electrolysis cell (MEC). Int Biodeterior Biodegradation 85:688–692CrossRefGoogle Scholar
  57. Rabaey K, Rozendal RA (2010) Microbial electrosynthesis revisiting the electrical route for microbial production. Nat Rev Microbiol 8(10):706–716CrossRefGoogle Scholar
  58. Rozendal RA, Hamelers HVM, Euverink GJW, Metz SJ, Buisman CJN (2006) Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int. J. Hydrogen Energy 31:1632–1640CrossRefGoogle Scholar
  59. Rozendal RA, Hamelers HVM, Molenkamp RJ, Buisman CJN (2007) Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes. Water Res 41:1984–1994CrossRefGoogle Scholar
  60. Rozendal RA, Jeremiasse AW, Hamelers HVM, Buisman CJN (2008a) Hydrogen production with a microbial biocathode. Environ Sci Technol A 42:629–634CrossRefGoogle Scholar
  61. Rozendal RA, Jeremiasse AW, Hamelers HVM (2008b) Effect of the type of ion exchange membrane on performance ion transport and pH in biocatalyzed electrolysis of wastewater. Water Sci Technol 57:1757–1762CrossRefGoogle Scholar
  62. Rozendal RA, Leone E, Keller J, Rabaey K (2009) Efficient hydrogen peroxide generationfrom organic matter in a bioelectrochemical system. Electrochem Commun 11(9):1752–1755CrossRefGoogle Scholar
  63. Sato T, Qadir M, Yamamoto S, Endo T, Zahoor A (2013) Global regional, and country level need for data on wastewater generation, treatment, and use. Agric Water Manag 130:1–13.  https://doi.org/10.1016/j.agwat.08.007 CrossRefGoogle Scholar
  64. Scholz WH (1993) Processes for industrial production of hydrogen and associated environmental effects. Gas Sep Purif 7:131–139CrossRefGoogle Scholar
  65. Selembo PA, Perez JM, Lloyd WA, Logan BE (2009a) High hydrogen production from glycerolor glucose by electrohydrogenesis using microbial electrolysis cells. Int J Hydrog Energy 34:5373–5381CrossRefGoogle Scholar
  66. Selembo PA, Merrill MD, Logan BE (2009b) The use of stainless steel and nickel alloys as low-cost cathodes in microbial electrolysis cells. J Power Sources 190:271–278CrossRefGoogle Scholar
  67. Sleutels TH, Ter HA, Buisman CJN, Hamelers HVM (2012) Bioelectrochemical systems: anoutlook for practical applications. ChemSusChem 5:1012–1019CrossRefGoogle Scholar
  68. Steinbusch KJJ, Hamelers HVM, Schaap JD, Kampman C, Buisman CJN (2010) Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures. Environ Sci Technol 44(1):513–517CrossRefGoogle Scholar
  69. Sultana S, Khan MD, Sabir S et al (2015) Bio-electro degradation of azo-dye in a combined anaerobic–aerobic process along with energy recovery. New J Chem 39:9461–9470CrossRefGoogle Scholar
  70. Tenca A, Cusick RD, Schievano A, Oberti R, Logan BE (2013) Evaluation of low cost cathode materials for treatment of industrial and food processing wastewater using microbial electrolysis cells. Int J Hydrog Energy 38:1859e65CrossRefGoogle Scholar
  71. Villano M, Aulenta F, Ciucci C, Ferri T, Giuliano A, Majone M (2010) Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture. Bioresour Technol 10:3085–3090CrossRefGoogle Scholar
  72. Villano M, Monaco G, Aulenta F, Majone M (2011) Electrochemically assisted methane production in a biofilm reactor. J Power Sources 196(22):9467–9472CrossRefGoogle Scholar
  73. Wagner RC, Regan JM, Oh SE, Zuo Y, Logan BE (2009) Hydrogen and methane production from swine wastewater using microbial electrolysis cells. Water Res 43:1480e8Google Scholar
  74. Wang X, Cheng S, Feng Y, Merrill MD, Saito T, Logan BE (2009) Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells. Environ Sci Technol 43(17):6870–6874CrossRefGoogle Scholar
  75. Wang A, Liu W, Ren N, Cheng H, Lee DJ (2010) Reduced internal resistance of microbial electrolysis cell (MEC) as factors of configuration and stuffing with granular activate carbon. Int J Hydrog Energy 35(24):13488–13492CrossRefGoogle Scholar
  76. WEF (World Economic Forum) (2016) The global risks report 2016. WEF, Geneva, Switzerland. wef.ch/risks2016Google Scholar
  77. Wu T, Englehardt JD (2012) A new method for removal of hydrogen peroxide interference in the analysis of chemical oxygen demand. Environ Sci Technol 46:2291–2298CrossRefGoogle Scholar
  78. Yossan S, Xiao L, Prasertsan P, He Z (2013) Hydrogen production in microbial electrolysis cells:choice of catholyte. Int J Hydrog Energy 38:9619–9624CrossRefGoogle Scholar
  79. Zhang Y, Angelidaki I (2014) Microbial electrolysis cells turning to be versatile technology: recent advances and future challenges. Water Res 56:11–25CrossRefGoogle Scholar
  80. Zhang Y, Wang Y, Angelidaki I (2015) Alternate switching between microbial fuel cell andmicrobial electrolysis cell operation as a new method to control H2O2 level in bioelectro- Fenton system. J Power Sources 291:108–116CrossRefGoogle Scholar
  81. Zhao HZ, Zhang Y, Chang YY, Li ZS (2012) Conversion of a substrate carbon source to formic acid for carbon dioxide emission reduction utilizing series-stacked microbial fuel cells. J Power Sources 217:59–64CrossRefGoogle Scholar
  82. Zhen G, Kobayashi T, Lu X, Xu K (2015) Understanding methane biocathode. Bioresour Technol 186:141–148CrossRefGoogle Scholar
  83. Zhen G, Lu X, Kobayashi T, Kumara G, Xu K (2016) Promoted electromethanosynthesis in a two chamber microbial electrolysis cells (MECs) containing a hybrid biocathode covered with graphite felt (GF). Chem Eng J 284:1146–1155CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Abdul Hakeem Anwer
    • 1
  • Mohammad Danish Khan
    • 1
  • Mohammad Zain Khan
    • 1
  • Rajkumar Joshi
    • 2
  1. 1.Department of ChemistryAligarh Muslim UniversityAligarhIndia
  2. 2.Department of Civil EngineeringJamia Millia IslamiaNew DelhiIndia

Personalised recommendations