Graphene Based Composites of Metals/Metal Oxides as Photocatalysts

  • Asim Jilani
  • Mohammad Omaish Ansari
  • Mohammad Oves
  • Syed Zajif Hussain
  • Mohd Hafiz Dzarfan OthmanEmail author


Graphene based metal and metal oxide composites have attracted great attention towards curing and solving various environmental issues. Further, the Honeycomb structured of graphene is an ideal nominee for various advanced application such as photovoltaics and optoelectronics etc. However, the performance of graphene based material strongly depends on the synthesis method. So, the selection of appropriate synthesis technique is important for targeted application. In the chapter we reviewed the synthesis and properties of graphene and further its role as a photocatalyst.


Graphene Metal/metal oxides composites Photocatalyst 



The authors gratefully acknowledge the financial support from the Ministry of Higher Education Malaysia under the Higher Institution Centre of Excellence Scheme (Project Number: R.J090301.7846.4 J201) and Universiti Teknologi Malaysia under Tier 1 Research University Grant (Project Number: Q.J130000.2546.16H40). The authors would also like to thank Research Management Centre, Universiti Teknologi Malaysia for the technical support.


  1. Albini A, Fagnoni M (2008) 1908: Giacomo Ciamician and the concept of green chemistry. ChemSusChem 1(1–2):63–66CrossRefGoogle Scholar
  2. Baur E, Perret A (1924) Über die Einwirkung von Licht auf gelöste Silbersalze in Gegenwart von Zinkoxyd. Helv Chim Acta 7(1):910–915CrossRefGoogle Scholar
  3. Bruner L, Kozak J (1911) Zur Kenntnis der Photokatalyse. I. Die Lichtreaktion in Gemischen: Uransalz + Oxalsäure. Z Elektrochem Angew Phys Chem 17(9):354–360Google Scholar
  4. Chang Y-H, Wang C-M, Hsu Y-K, Pai Y-H, Lin J-Y, Lin C-H (2015) Graphene oxide as the passivation layer for Cu x O photocatalyst on a plasmonic Au film and the corresponding photoluminescence study. Opt Express 23(19):A1245–A1252CrossRefGoogle Scholar
  5. Chen C, Cai W, Long M, Zhou B, Wu Y, Wu D, Feng Y (2010) Synthesis of visible-light responsive graphene oxide/TiO2 composites with p/n heterojunction. ACS Nano 4(11):6425–6432CrossRefGoogle Scholar
  6. Dąbrowski A (2001) Adsorption—from theory to practice. Adv Colloid Interf Sci 93(1):135–224CrossRefGoogle Scholar
  7. Djurišić AB, Leung YH, Ching Ng AM (2014) Strategies for improving the efficiency of semiconductor metal oxide photocatalysis. Mater Horiz 1(4):400–410CrossRefGoogle Scholar
  8. Du J, Lai X, Yang N, Zhai J, Kisailus D, Su F, Wang D, Jiang L (2011) Hierarchically ordered macro−mesoporous TiO2−graphene composite films: improved mass transfer, reduced charge recombination, and their enhanced photocatalytic activities. ACS Nano 5(1):590–596CrossRefGoogle Scholar
  9. Guo Y, Guo Y, Wang X, Li P, Kong L, Wang G, Li X, Liu Y (2017) Enhanced photocatalytic reduction activity of uranium(vi) from aqueous solution using the Fe2O3–graphene oxide nanocomposite. Dalton Trans 46(43):14762–14770CrossRefGoogle Scholar
  10. Habiba K, Makarov VI, Weiner BR, Morell G (2014) Fabrication of nanomaterials by pulsed laser synthesis. In: Manufacturing nanostructures. One Central Press, ManchesterGoogle Scholar
  11. Hassan HMA, Abdelsayed V, Khder AERS, Abou Zeid KM, Terner J, El-Shall MS, Al-Resayes SI, El-Azhary AA (2009) Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media. J Mater Chem 19(23):3832–3837CrossRefGoogle Scholar
  12. Huang X, Yin Z, Wu S, Qi X, He Q, Zhang Q, Yan Q, Boey F, Zhang H (2011) Graphene-based materials: synthesis, characterization, properties, and applications. Small 7(14):1876–1902CrossRefGoogle Scholar
  13. Jilani A, Othman MHD, Ansari MO, Kumar R, Alshahrie A, Ismail AF, Khan IU, Sajith VK, Barakat MA (2017) Facile spectroscopic approach to obtain the optoelectronic properties of few-layered graphene oxide thin films and their role in photocatalysis. New J Chem 41(23):14217–14227CrossRefGoogle Scholar
  14. Jilani A, Othman MHD, Ansari MO, Hussain SZ, Ismail AF, Khan IU (2018) Inamuddin, Graphene and its derivatives: synthesis, modifications, and applications in wastewater treatment. Environ Chem Lett 16:1301–1323CrossRefGoogle Scholar
  15. Joo JB, Lee I, Dahl M, Moon GD, Zaera F, Yin Y (2013) Controllable synthesis of mesoporous TiO2 hollow shells: toward an efficient photocatalyst. Adv Funct Mater 23(34):4246–4254CrossRefGoogle Scholar
  16. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn J-H, Kim P, Choi J-Y, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710CrossRefGoogle Scholar
  17. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388CrossRefGoogle Scholar
  18. Lee E, Hong J-Y, Kang H, Jang J (2012) Synthesis of TiO2 nanorod-decorated graphene sheets and their highly efficient photocatalytic activities under visible-light irradiation. J Hazard Mater 219-220:13–18CrossRefGoogle Scholar
  19. Li X, Zhu Y, Cai W, Borysiak M, Han B, Chen D, Piner RD, Colombo L, Ruoff RS (2009) Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett 9(12):4359–4363CrossRefGoogle Scholar
  20. Liu N, Luo F, Wu H, Liu Y, Zhang C, Chen J (2008) One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv Funct Mater 18(10):1518–1525CrossRefGoogle Scholar
  21. Liu X, Pan L, Lv T, Lu T, Zhu G, Sun Z, Sun C (2011) Microwave-assisted synthesis of ZnO–graphene composite for photocatalytic reduction of Cr(vi). Cat Sci Technol 1(7):1189–1193CrossRefGoogle Scholar
  22. Liu J, Durstock M, Dai L (2014) Graphene oxide derivatives as hole-and electron-extraction layers for high-performance polymer solar cells. Energy Environ Sci 7(4):1297–1306CrossRefGoogle Scholar
  23. Lotya M, Hernandez Y, King PJ, Smith RJ, Nicolosi V, Karlsson LS, Blighe FM, De S, Wang Z, McGovern I (2009) Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J Am Chem Soc 131(10):3611–3620CrossRefGoogle Scholar
  24. Niu M, Cheng D, Cao D (2014) Understanding the mechanism of photocatalysis enhancements in the graphene-like semiconductor sheet/TiO2 composites. J Phys Chem C 118(11):5954–5960CrossRefGoogle Scholar
  25. Omiciuolo L, Hernández ER, Miniussi E, Orlando F, Lacovig P, Lizzit S, Menteş TO, Locatelli A, Larciprete R, Bianchi M, Ulstrup S, Hofmann P, Alfè D, Baraldi A (2014) Bottom-up approach for the low-cost synthesis of graphene-alumina nanosheet interfaces using bimetallic alloys. Nat Commun 5:5062CrossRefGoogle Scholar
  26. Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong* J (2009) Layer area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9(8):3087–3087CrossRefGoogle Scholar
  27. Ruan G, Sun Z, Peng Z, Tour JM (2011) Growth of graphene from food, insects, and waste. ACS Nano 5(9):7601–7607CrossRefGoogle Scholar
  28. Sitko R, Turek E, Zawisza B, Malicka E, Talik E, Heimann J, Gagor A, Feist B, Wrzalik R (2013) Adsorption of divalent metal ions from aqueous solutions using graphene oxide. Dalton Trans 42(16):5682–5689CrossRefGoogle Scholar
  29. Somani PR, Somani SP, Umeno M (2006) Planer nano-graphenes from camphor by CVD. Chem Phys Lett 430(1):56–59CrossRefGoogle Scholar
  30. Sun Z, Yan Z, Yao J, Beitler E, Zhu Y, Tour JM (2010) Growth of graphene from solid carbon sources. Nature 468(7323):549–552CrossRefGoogle Scholar
  31. Tang L, Nguyen VH, Lee YR, Kim J, Shim J-J (2015) Photocatalytic activity of reduced graphene oxide/SnO2 nanocomposites prepared in ionic liquid. Synth Met 201:54–60CrossRefGoogle Scholar
  32. Upadhyay RK, Soin N, Roy SS (2014) Role of graphene/metal oxide composites as photocatalysts, adsorbents and disinfectants in water treatment: a review. RSC Adv 4(8):3823–3851CrossRefGoogle Scholar
  33. Wang H, Yuan X, Wu Y, Huang H, Peng X, Zeng G, Zhong H, Liang J, Ren M (2013) Graphene-based materials: fabrication, characterization and application for the decontamination of wastewater and wastegas and hydrogen storage/generation. Adv Colloid Interf Sci 195–196:19–40CrossRefGoogle Scholar
  34. Xian T, Yang H, Di L, Ma J, Zhang H, Dai J (2014) Photocatalytic reduction synthesis of SrTiO3-graphene nanocomposites and their enhanced photocatalytic activity. Nanoscale Res Lett 9(1):327CrossRefGoogle Scholar
  35. Yahia IS, Jilani A, Abdel-wahab MS, Zahran HY, Ansari MS, Al-Ghamdi AA, Hamdy MS (2016) The photocatalytic activity of graphene oxide/Ag3PO4 nano-composite: loading effect. Optik 127(22):10746–10757CrossRefGoogle Scholar
  36. Yeh T-F, Cihlář J, Chang C-Y, Cheng C, Teng H (2013) Roles of graphene oxide in photocatalytic water splitting. Mater Today 16(3):78–84CrossRefGoogle Scholar
  37. Zhang H, Xu P, Du G, Chen Z, Oh K, Pan D, Jiao Z (2011) A facile one-step synthesis of TiO2/graphene composites for photodegradation of methyl orange. Nano Res 4(3):274–283CrossRefGoogle Scholar
  38. Zhang L, Du L, Cai X, Yu X, Zhang D, Liang L, Yang P, Xing X, Mai W, Tan S, Gu Y, Song J (2013) Role of graphene in great enhancement of photocatalytic activity of ZnO nanoparticle–graphene hybrids. Physica E 47:279–284CrossRefGoogle Scholar
  39. Zhao G, Li J, Ren X, Chen C, Wang X (2011) Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environ Sci Technol 45(24):10454–10462CrossRefGoogle Scholar
  40. Zhou X, Huang X, Qi X, Wu S, Xue C, Boey FYC, Yan Q, Chen P, Zhang H (2009) In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces. J Phys Chem C 113(25):10842–10846CrossRefGoogle Scholar
  41. Zhu S, Wang D (2017) Photocatalysis: basic principles, diverse forms of implementations and emerging scientific opportunities. Adv Energy Mater 7(23):1700841CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Asim Jilani
    • 1
    • 2
    • 3
  • Mohammad Omaish Ansari
    • 3
  • Mohammad Oves
    • 4
  • Syed Zajif Hussain
    • 5
  • Mohd Hafiz Dzarfan Othman
    • 1
    • 2
    Email author
  1. 1.Advanced Membrane Technology Research CentreUniversiti Teknologi MalaysiaJohor BahruMalaysia
  2. 2.School of Chemical and Energy Engineering, Faculty of EngineeringUniversiti Teknologi MalaysiaJohor BahruMalaysia
  3. 3.Center of NanotechnologyKing Abdul-Aziz UniversityJeddahSaudi Arabia
  4. 4.Centre of Excellence in Environmental StudiesKing Abdul-Aziz UniversityJeddahSaudi Arabia
  5. 5.Department of Chemistry and Chemical EngineeringSBA School of Science & Engineering (SBASSE), Lahore University of Management Sciences (LUMS)LahorePakistan

Personalised recommendations