Advertisement

Discrete-Time Systems with Switching

  • Anatoly A. Martynyuk
Chapter

Abstract

In the present chapter we set out a general approach to stability analysis problem for a set of trajectories of difference equations with uncertain parameter values.

References

  1. 2.
    Aleksandrov, A.Yu., Platonov, A.V.: Aggregation and stability analysis of nonlinear complex systems. J. Math. Anal. Appl. 342(2), 989–1002 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 3.
    Aleksandrov, A.Yu., Platonov, A.V.: Conditions of ultimate boundedness of solutions for a class of nonlinear systems. Nonlinear Dyn. Syst. Theory 8(2), 109–122 (2008)MathSciNetzbMATHGoogle Scholar
  3. 4.
    Aleksandrov, A.Yu., Zhabko, A.P.: Preservation of stability under discretization of systems of ordinary differential equations. Sib. Math. J. 51(3), 383–395 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 5.
    Aleksandrov, A.Yu., Martynyuk, A.A., Platonov, A.V.: Analysis of a set of nonlinear dynamics trajectories: stability of difference equations. J. Math. Anal. Appl. 421(1), 105–117 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 6.
    Aleksandrov, A.Yu., Martynyuk, A.A., Platonov, A.V.: Stability analysis of nonlinear switched difference systems via the comparison method. Pan Am. Math. J. 25(2), 71–88 (2015)MathSciNetzbMATHGoogle Scholar
  6. 7.
    Aleksandrov, A.Yu., Martynyuk, A.A., Platonov, A.V.: Dwell time stability analysis for nonlinear switched difference systems. Nonlinear Dyn. Syst. Theory 16(3), 221–234 (2016)MathSciNetzbMATHGoogle Scholar
  7. 24.
    Deimling, K.: Multivalued Differential Equations. Walter de Gruyter, Berlin (1992)zbMATHCrossRefGoogle Scholar
  8. 51.
    Lakshmikantham, V., Leela, S., Martynyuk, A.A.: Stability Analysis of Nonlinear Systems, 2nd edn. Springer, Basel (2015)zbMATHCrossRefGoogle Scholar
  9. 52.
    LaSalle, J.P.: The Stability and Control of Discrete Process. Springer, New York (1986)zbMATHCrossRefGoogle Scholar
  10. 54.
    Liberzon, D.: Switching in Systems and Control. Birkhäuser, Boston (2003)zbMATHCrossRefGoogle Scholar
  11. 55.
    Liberzon, D., Morse, A.S.: Basic problems in stability and design of switched systems. IEEE Contr. Syst. Mag. 19(15), 59–70 (1999)zbMATHGoogle Scholar
  12. 57.
    Lukyanova, T.A., Martynyuk, A.A.: Robust stability: three approaches for discrete-time systems. Nonlinear Dyn. Syst. Theory 2(1), 45–55 (2002)MathSciNetzbMATHGoogle Scholar
  13. 65.
    Martynyuk, A.A.: Stability analysis of discrete-time systems. Int. Appl. Mech. 36(7), 3–35 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 66.
    Martynyuk, A.A.: Qualitative Methods in Nonlinear Dynamics. Novel Approaches to Liapunov’s Matrix Function. Marcel Dekker, New York (2002)Google Scholar
  15. 68.
    Martynyuk, A.A.: On the theory of Lyapunov’s direct method. Dokl. Math. 73(4), 376–379 (2006)zbMATHCrossRefGoogle Scholar
  16. 69.
    Martynyuk, A.A.: Stability of Motion. The Role of Multicomponent Liapunov’s Functions. Cambridge Scientific Publishers, Cambridge (2007)Google Scholar
  17. 72.
    Martynyuk, A.A.: Asymptotic stability criterion for nonlinear monotonic systems and its applications (Review). Int. Appl. Mech. 47(5), 475–534 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 76.
    Martynyuk, A.A.: On the stability of trajectories of the set of difference equations. Dokl. NAS Ukr. 5, 65–69 (2014)MathSciNetzbMATHGoogle Scholar
  19. 82.
    Martynyuk, A.A., Obolenskij, A.Yu.: Stability of solutions of autonomous Wazewskij systems. Differ. Equ. 16(8), 1392–1407 (1980)Google Scholar
  20. 89.
    Martynyuk, A.A., Miladzhanov, V.G.: Stability Analysis of Nonlinear Systems Under Structural Perturbations. Cambridge Scientific Publishers, Cambridge (2014)zbMATHGoogle Scholar
  21. 116.
    Vassilyev, S.N., Kosov, A.A., Malikov, A.I.: Stability analysis of nonlinear switched systems via reduction method. In: Proceedings of the 18th IFAC World Congress, Milano, vol. 18, Part 1, pp. 5718–5723 (2011)Google Scholar
  22. 124.
    Zubov, V.I.: Mathematical Methods of Investigations of Systems Automatical Control. Sudpromgiz, Leningrad (1959)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Anatoly A. Martynyuk
    • 1
  1. 1.Institute of MechanicsNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations