Advertisement

Trends in Thermochemical Techniques of Boriding

  • Michal Kulka
Chapter
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

All the specified thermochemical techniques of boriding in solid, liquid and gaseous media were characterized and compared in this chapter based on the available literature data. The technological aspects of boriding processes were analyzed, taking into consideration the advantages and disadvantages of each method. The effects of the boriding techniques on the microstructure of borided materials have been indicated. The mechanism of formation of active boron atoms was described. Some issues of the thermodynamics of gas boriding were analyzed. The chemical techniques of boriding were divided into the three groups: boriding in solid media, boriding in liquid media and boriding in gaseous media (see Fig.  2.1). Due to the need of using the elevated temperature during these processes, they were usually recognized as thermochemical techniques. In the present work, the most intensively developed techniques, put in the boxes drawn in a broken line in Fig.  2.1, were described in more detail, taking into account the current trends in boriding. Therefore, the most attention in this chapter was devoted to the powder-pack processes, electrochemical boronizing in borax as well as to the gas boronizing with the use of boron halides or boranes.

References

  1. Aich S, Ravi Chandran KS (2002) TiB whisker coating on titanium surfaces by solid-state diffusion: synthesis, microstructure, and mechanical properties. Metall Mater Trans A 33A:3489–3498CrossRefGoogle Scholar
  2. Akca B, Çalık A (2017) Characterization of borided pure molybdenum under controlled atmosphere. Prot Met Phys Chem Surf 53(3):511–517CrossRefGoogle Scholar
  3. Allaoui O, Bouaouadja N, Saindernan G (2006) Characterization of boronized layers on a XC38 steel. Surf Coat Technol 201:3475–3482CrossRefGoogle Scholar
  4. Anthymidis KG, Stergioudis E, Tsipas DN (2001a) Boriding in a fluidized bed reactor. Mater Lett 51:156–160CrossRefGoogle Scholar
  5. Anthymidis KG, Tsipas DN, Stergioudis E (2001b) Boriding of titanium alloys in a fluidized bed reactor. J Mater Sci Lett 20:2067–2069CrossRefGoogle Scholar
  6. Anthymidis KG, Stergioudis G, Roussos D, Zinoviadis P, Tsipas DN (2002a) Boriding of ferrous and non-ferrous metals in fluidised bed reactor. Surf Eng 18(4):255–259CrossRefGoogle Scholar
  7. Anthymidis KG, Stergioudis E, Tsipas DN (2002b) Boride coatings on non-ferrous materials in a fluidized bed reactor and their properties. Sci Technol Adv Mater 3:303–311CrossRefGoogle Scholar
  8. Anthymidis KG, Zinoviadis P, Roussous D, Tsipas DN (2002c) Boriding of nickel in a fluidized bed reactor. Mater Res Bull 37:515–522CrossRefGoogle Scholar
  9. Anzawa Y, Koyama S, Shohji I (2017) The effect of boriding on wear resistance of cold work tool steel. J Phys Conf Ser 843:012064Google Scholar
  10. Atar E, Kayali ES, Cimenoglu H (2008) Characteristics and wear performance of borided Ti6Al4V alloy. Surf Coat Technol 202:4583–4590CrossRefGoogle Scholar
  11. Babul T, Kucharieva N (2014) Application of active powders at fluidised bed heat treatment technologies. Int J Microstruct Mater Prop 9(1):50–59Google Scholar
  12. Balandin YA (2004) Boronitriding of die steels in fluidized bed. Metalloved Term Obrab Met (Met Sci Heat Treat) 9:25–27Google Scholar
  13. Balandin YA (2005) Suface hardening of die steels by diffusion boronizing, borocopperizing, and borochromizing in fluidized bed. Metalloved Term Obrab Met (Met Sci Heat Treat) 3:27–30Google Scholar
  14. Bartkowska A, Pertek A (2014) Laser production of B-Ni complex layers. Surf Coat Technol 248:23–29CrossRefGoogle Scholar
  15. Bartkowska A, Pertek A, Popławski M, Bartkowski B, Przestacki D, Miklaszewski A (2015a) Effect of laser modification of B-Ni complex layer on wear resistance and microhardness. Opt Laser Technol 72:116–124CrossRefGoogle Scholar
  16. Bartkowska A, Pertek A, Kulka M, Klimek L (2015b) Laser surface modification of boronickelized medium carbon steel. Opt Laser Technol 74:145–157CrossRefGoogle Scholar
  17. Bartsch K, Wolf E (1979) Zur Thermodynamik der Systeme B–BCl–H und B–Br–H. Z Anorg Allg Chem 457:31–37CrossRefGoogle Scholar
  18. Baumgarten P, Bruns W (1939) Über die Umsetzung von Borfluorid mit Bortrioxyd, Boraten, Carbonaten und Nitraten und zur Kenntnis eines mutmaßlichen Boroxyfluorides (BOF)3. Ber Dtsch Chem Ges B 72:1753–1762CrossRefGoogle Scholar
  19. Bayazitov MI, Volkov VA, Aliev AA (1976) Boronizing from paste with furnace heating. Metalloved Term Obrab Met (Met Sci Heat Treat) 18(5):457–458Google Scholar
  20. Bindal C (1991) Determination of some material properties of borides coated on the surfaces of low alloy and carbon steels. Ph.D. thesis, Istanbul Technical University, Institute of Science and Technology, Istanbul, TurkeyGoogle Scholar
  21. Bindal C, Üçisik AH (1999) Characterization of borides formed on impurity-controlled chromium-based low alloy steels. Surf Coat Technol 122:208–213CrossRefGoogle Scholar
  22. Blanter ME, Besedin NP (1955) Kinetics of formation of boride layers on iron alloys. Metalloved Term Obrab Met (Met Sci Heat Treat) 6:3–9Google Scholar
  23. Bonomi A, Giess H, Gentaz C (1973) Electrochemical boriding of molybdenum in molten salts. Electrodeposition Surf Treat 1(5):419–427CrossRefGoogle Scholar
  24. Bonomi A, Habersaat L, Bienvenu G (1978) Electrochemical boriding of nitriding steel in molten salts. Surf Technol 6(4):313–319CrossRefGoogle Scholar
  25. Bouaziz SA, Boudaoud N, Zanoun A (2009) Boruration thermochimique d’un acier C38 dans un bain de sels borax-SiC (Thermochimical boriding of a C38 steel in molten salts containing borax-SiC). Materiaux et Techniques 97(4):253–259CrossRefGoogle Scholar
  26. Brakman CM, Gommers AWJ, Mittemeijer EJ (1989) Boriding of Fe and Fe–C, Fe–Cr, and Fe–Ni alloys; Boride-layer growth kinetics. J Mater Res Soc 4:1354–1370CrossRefGoogle Scholar
  27. Çalik A (2013) Effect of powder particle size on the mechanical properties of boronized EN H320 LA steel sheets. ISIJ Int 53(1):160–164CrossRefGoogle Scholar
  28. Çalik A, Karakaş MS, Ucar N, Ünüvar F (2014) Boriding kinetics of pure cobalt. Kovove Mat 52(2):107–112Google Scholar
  29. Campos I, Oseguera J, Figueroa U, García JA, Bautista O, Kelemenis G (2003) Kinetic study of boron diffusion in the paste-boriding process. Mater Sci Eng A 352:261–265CrossRefGoogle Scholar
  30. Campos I, Bautista O, Ramírez G, Islas M, De La Parra J, Zúñiga L (2005) Effect of boron paste thickness on the growth kinetics of Fe2B boride layers during the boriding process. Appl Surf Sci 243:429–436CrossRefGoogle Scholar
  31. Campos I, Palomar M, Amador A, Ganem R, Martinez J (2006a) Evaluation of the corrosion resistance of iron boride coatings obtained by paste boriding process. Surf Coat Technol 201:2438–2442CrossRefGoogle Scholar
  32. Campos I, Torres R, Bautista O, Ramírez G, Zúñiga L (2006b) Effect of boron paste thickness on the growth kinetics of polyphase boride coatings during the boriding process. Appl Surf Sci 252:2396–2403CrossRefGoogle Scholar
  33. Campos I, Rosas R, Figueroa U, Villa Velázquez C, Meneses A, Guevara A (2008a) Fracture toughness evaluation using Palmqvist crack models on AISI 1045 borided steels. Mater Sci Eng A 488:562–568CrossRefGoogle Scholar
  34. Campos I, Farah M, López N, Bermúdez G, Rodríguez G, Villa Velázquez C (2008b) Evaluation of the tool life and fracture toughness of cutting tools boronized by the paste boriding process. Appl Surf Sci 254:2967–2974CrossRefGoogle Scholar
  35. Campos-Silva I, Balankin AS, Sierra AH, López-Perrusquia N, Escobar-Galindo R, Morales-Matamoros D (2008) Characterization of rough interfaces obtained by boriding. Appl Surf Sci 255:2596–2602CrossRefGoogle Scholar
  36. Campos-Silva I, Ortiz-Domínguez M, Keddam M, López-Perrusquia N, Carmona-Vargas A, Elías-Espinosa M (2009) Kinetics of the formation of Fe2B layers in gray cast iron: effects of boron concentration and boride incubation time. Appl Surf Sci 255:9290–9295CrossRefGoogle Scholar
  37. Campos-Silva I, Ortiz-Domínguez M, Lopez-Perrusquia N, Meneses-Amador A, Escobar-Galindo R, Martínez-Trinidad J (2010) Characterization of AISI 4140 borided steels. Appl Surf Sci 256:2372–2379CrossRefGoogle Scholar
  38. Campos-Silva I, Martínez-Trinidad J, Doñu-Ruíz MA, Rodríguez-Castro G, Hernández-Sánchez E, Bravo-Bárcenas O (2011) Interfacial indentation test of FeB/Fe2B coatings. Surf Coat Technol 206:1809–1815CrossRefGoogle Scholar
  39. Campos-Silva I, Ortiz-Domínguez M, Tapia-Quintero C, Rodríguez-Castro G, Jiménez-Reyes MY, Chávez-Gutiérrez E (2012) Kinetics and boron diffusion in the FeB/Fe2B layers formed at the surface of borided high-alloy steel. J Mater Eng Perform 21(8):1714–1723CrossRefGoogle Scholar
  40. Campos-Silva I, Flores-Jiménez M, Rodríguez-Castro G, Hernández-Sánchez E, Martínez-Trinidad J, Tadeo-Rosas R (2013a) Improved fracture toughness of boride coating developed with a diffusion annealing process. Surf Coat Technol 237:429–439CrossRefGoogle Scholar
  41. Campos-Silva I, Hernández-Sánchez E, Rodríguez-Castro G, Cimenoglu H, Nava-Sánchez JL, Meneses-Amador A, Carrera-Espinoza R (2013b) A study of indentation for mechanical characterization of the Fe2B layer. Surf Coat Technol 232:173–181CrossRefGoogle Scholar
  42. Campos-Silva I, Bravo-Bárcenas D, Meneses-Amador A, Ortiz-Domínguez M, Cimenoglu H, Figueroa-López U, Andraca-Adame J (2013c) Growth kinetics and mechanical properties of boride layers formed at the surface of the ASTM F-75 biomedical alloy. Surf Coat Technol 237:402–414CrossRefGoogle Scholar
  43. Campos-Silva I, Bravo-Bárcenas D, Cimenoglu H, Figueroa-López U, Flores-Jiménez M, Meydanoglu O (2014) The boriding process in CoCrMo alloy: fracture toughness in cobalt boride coatings. Surf Coat Technol 260:362–368CrossRefGoogle Scholar
  44. Casadesus P, Frantz C, Gantois M (1979) Boriding with a thermally unstable gas (diborane). Metall Trans A 10A:1739–1743CrossRefGoogle Scholar
  45. Chernov YB, Afinogenov AI, Ilyushchenko NG, Shurov NI, Zyryanov VG, Martem’yanova ZS, Chernova MP, Shamanova ND (1998) Boriding steels in molten calcium chloride. Rasplavy 2:70–75Google Scholar
  46. Chernov YB, Anfinogenov AI, Veselov IN (1999) Special features of the technology of boronizing steel in a calcium chloride melt. Metalloved Term Obrab Met (Met Sci Heat Treat) 41(12):511–515CrossRefGoogle Scholar
  47. Chochołowski M, Przybyłowicz K (1984) Boriding in powders by aluminothermic method of reduction of boric anhydride. In: Proceedings of conference OC’84, vol 1, pp 188–190Google Scholar
  48. David K, Anthymidis KG, Agrianidis P, Petropoulos G (2008) Characterization and tribological properties of boride coatings of steels in a fluidized bed reactor. Ind Lubr Tribol 60(1):31–36CrossRefGoogle Scholar
  49. Doñu Ruiz MA, López Perrusquia N, Sánchez Huerta D, Torres San Miguel CR, Urriolagoitia Calderón GM, Cerillo Moreno EA, Cortes Suarez JV (2015) Growth kinetics of boride coatings formed at the surface AISI M2 during dehydrated paste pack boriding. Thin Solid Films 596:147–154CrossRefGoogle Scholar
  50. Dybkov VI (2017) Boriding of chromium steels. Powder Metall Met Ceram 55(11–12):650–655CrossRefGoogle Scholar
  51. Efe GÇ, İpek M, Özbek İ, Bindal C (2008) Kinetics of borided 31CrMoV9 and 34CrAlNi7 steels. Mater Charact 59:23–31CrossRefGoogle Scholar
  52. Eipeltauer E (1951) Borierung von Eisen aus der Gasphase (Gas boronizing of iron). Verlag Technik, BerlinGoogle Scholar
  53. Flichtl W (1981) Boronizing and its practical applications. Mater Eng 2:276–286Google Scholar
  54. Fuda M, Kawahara G, Sugimoto K (1991) Electrolytic boriding of Fe–Cr–Ni alloys in molten alkali salt with low melting point. Nippon Kinzoku Gakkaishi (J Jpn Inst Met) 55(4):412–418 (in Japanese)CrossRefGoogle Scholar
  55. Genel K, Ozbek I, Bindal C (2003) Kinetics of boriding of AISI W1 steel. Mater Sci Eng A 347:311–314CrossRefGoogle Scholar
  56. Gerasimov LW, Prosvirin WI (1972) Skorostnyje procesy khimikotermicheskoy obrabotki z primienieniem past i suspensii. RKIIGA No. 200, Ryga, pp 91–92Google Scholar
  57. Goeuriot P, Thevenot F, Driver JH (1981) Surface treatment of steels: Borudif, a new boriding process. Thin Solid Films 78:67–76CrossRefGoogle Scholar
  58. Goeuriot P, Fillit R, Thevenot F, Driver JH, Bruyas H (1982) The influence of alloying element additions on the boriding of steels. Mater Sci Eng 55:9–19CrossRefGoogle Scholar
  59. Günen A, Kurt B, Orhan N, Kanca E (2014) The investigation of corrosion behavior of borided AISI 304 austenitic stainless steel with nanoboron powder. Prot Met Phys Chem Surf 50(1):104–110CrossRefGoogle Scholar
  60. Günen A, Kanca E, Demir M, Er Y, Sağlam G, Gök MS (2017) Microabrasion wear behavior of fast-borided steel tooth drill bits. Tribol Trans 60(2):267–275CrossRefGoogle Scholar
  61. Gunes I, Kanat S (2015) Diffusion kinetics and characterization of borided AISI D6 steel. Prot Met Phys Chem Surf 51(5):842–846CrossRefGoogle Scholar
  62. Gutman MB, Mikhailov LA, Kaufman WG (1968) USSR Patent No. 223562, Biul. Izobret. i Tow. Znakov, 23, p 131Google Scholar
  63. Hegewaldt F, Singheiser L, Türk M (1984) Gasborieren. Haerterei Tech Mit 39(1):7–15Google Scholar
  64. Hernández-Sanchez E, Rodriguez-Castro G, Meneses-Amador A, Bravo-Bárcenas D, Arzate-Vazquez I, Martínez-Gutiérrez H, Romero-Romo M, Campos-Silva I (2013) Effect of the anisotropic growth on the fracture toughness measurements obtained in the Fe2B layer. Surf Coat Technol 237:292–298CrossRefGoogle Scholar
  65. Hill VL, Stapleton TF (1965) Boronizing bath and method. US Patent No. 3201285 AGoogle Scholar
  66. Huang YG, Chen JR, Zhang ML, Zhong XX, Wang HQ, Li QY (2013) Electrolytic boronizing of titanium in Na2B4O7-20% K2CO3. Mater Manuf Process 28:1310–1313CrossRefGoogle Scholar
  67. Hudáková M, Kusý M, Sedlická V, Grgač P (2007) Analysis of the boronized layer on K 190 PM tool steel. Mater Tehnologije 41(2):81–84Google Scholar
  68. Hunger HJ, Trute G (1994) Successful boronizing of nickel-based alloys. Mater Sci Forum 163–165:341–346CrossRefGoogle Scholar
  69. Hurd DT (1952) An introduction to the chemistry of hydrides. Wiley, Chapman & Hall, New York, LondonGoogle Scholar
  70. Ilyushchenko NG, Belyaeva GI (1968) Low-temperature aluminizing of steels in molten baths. Metalloved Term Obrab Met (Met Sci Heat Treat) 4:14–17Google Scholar
  71. Ivanov R, Ignatova-Ivanova T (2016) Diffusion coatings as corrosion inhibitors. Acta Sci Nat 3(1):39–43Google Scholar
  72. Jasiński J, Torbus R, Kasprzycka E, Bogdański B (2007) Influence of the preheat treatment on the microstructure and properties of X37CrMoV5-1 steel. Mater Manuf Process 22(1):5–8CrossRefGoogle Scholar
  73. Jasnogorodsky IZ (1949) Nagrev metallov i splavov w elektrolitie. Maszgiz, MoskvaGoogle Scholar
  74. Jastrzębowski K, Młynarczak A, Jakubowski J (1988) Way of producing diffusion coatings on metals with powder mixtures. Author’s certificate about making the invention No. 226543. Warsaw, PolandGoogle Scholar
  75. Kahvecioglu O, Sista V, Eryilmaz OL, Erdemir A, Timur S (2011) Ultra-fast boriding of nickel aluminide. Thin Solid Films 520:1575–1581CrossRefGoogle Scholar
  76. Kahvecioglu Feridun O, Sista V, Eryilmaz OL, Erdemir A (2015) Electrochemical boriding of molybdenum in molten borax. Surf Eng 31(8):575–580CrossRefGoogle Scholar
  77. Kaouka A, Allaoui O, Keddam M (2013) Growth kinetics of the boride layers formed on SAE 1035 steel. Mater et Tech 101(7), Article number 705CrossRefGoogle Scholar
  78. Kaouka A, Allaoui O, Keddam M (2014) Properties of boride layer on boride SAE 1035 steel by molten salt. Appl Mech Mater 467:116–121CrossRefGoogle Scholar
  79. Kartal G, Timur S (2013) Growth kinetics of titanium borides produced by CRTD-Bor method. Surf Coat Technol 215:440–446CrossRefGoogle Scholar
  80. Kartal G, Timur S, Arslan C (2005) Effects of process current density and temperature on electrochemical boriding of steel in molten salts. J Electron Mater 34(12):1538–1542CrossRefGoogle Scholar
  81. Kartal G, Kahvecioglu O, Timur S (2006) Investigating the morphology and corrosion behavior of electrochemically borided steel. Surf Coat Technol 200:3590–3593CrossRefGoogle Scholar
  82. Kartal G, Timur S, Urgen M, Erdemir A (2010a) Electrochemical boriding of titanium for improved mechanical properties. Surf Coat Technol 204:3935–3939CrossRefGoogle Scholar
  83. Kartal G, Timur S, Eryilmaz OL, Erdemir A (2010b) Influence of process duration on structure and chemistry of borided low carbon steel. Surf Coat Technol 205:1578–1583CrossRefGoogle Scholar
  84. Kartal G, Timur S, Sista V, Eryilmaz OL, Erdemir A (2011) The growth of single Fe2B phase on low carbon steel via phase homogenization in electrochemical boriding (PHEB). Surf Coat Technol 206:2005–2011CrossRefGoogle Scholar
  85. Kartal Sireli G, Ozkalafat P, Timur S (2017) Surface modification of chromium-silicon martensitic steel by forming hard borides. Surf Coat Technol 326:18–27CrossRefGoogle Scholar
  86. Katagiri T (1969) Study of the gas boronizing reaction of iron with BCl3 and H2. J Jpn Inst Met 33(6):746–749CrossRefGoogle Scholar
  87. Keddam M, Kulka M, Makuch N, Pertek A, Małdziński L (2014) A kinetic model for estimating the boron activation energies in the FeB and Fe2B layers during the gas-boriding of armco iron: effect of boride incubation times. Appl Surf Sci 298:155–163CrossRefGoogle Scholar
  88. Khairulmaini M, Alias SK, Abdullah B, Said JM, Sulong N, Mazni M, Jenal M (2015) Single and double shot blasting treatment of 304 stainless steel. J Teknologi (Sci Eng) 76(9):49–52Google Scholar
  89. Kilic A, Kartal G, Urgen M, Timur S (2013) Effects of electrochemical boriding process parameters on the formation of titanium borides. Surf Eng Appl Electrochem 49(2):168–175CrossRefGoogle Scholar
  90. Köksal S (2009) The characterization of Wc–Co based materials boronized within molten salt bath. Solid State Phenom 144:261–266CrossRefGoogle Scholar
  91. Kostyk K (2015) Development of the high-speed boriding technology of alloy steel. East Eur J Enterp Technol 6(11):8–15 (in Ukrainian)Google Scholar
  92. Koyama K, Shimotake H, Mrazek FC (1983) Boriding of nickel and other metals at temperatures below 670°C. J Electrochem Soc 130(1):147–151CrossRefGoogle Scholar
  93. Koyama S, Takada M, Kawasumi K, Fukuda T, Shohji I (2011a) Effect of B contents in fused salt bath on boriding of SUS304 stainless steel. Nippon Kinzoku Gakkaishi (J Jpn Inst Met) 75(12):678–683Google Scholar
  94. Koyama S, Fukuda T, Kawasumi K, Shohji I (2011b) Influence of processing temperature on boriding of SUS304 stainless steel by B added fused salt bath. Nippon Kinzoku Gakkaishi (J Jpn Inst Met) 75(12):684–689Google Scholar
  95. Koyama S, Kawasumi K, Fukuda T, Shohji I (2011c) Influence of processing temperature on boriding of SUS304 stainless steel by Al added fused salt bath. Nihon Kikai Gakkai Ronbunshu, A Hen (Trans Jpn Soc Mech Eng Part A) 77(783):1986–1993Google Scholar
  96. Krzyminski H, Degussa W, Kunst H (1973) Boriding of refractory metals. Haerterei Tech Mit 28(2):100–112Google Scholar
  97. Kubaschewski O, Evans EL, Alcock CB (1967) Metallurgical thermochemistry, 4th edn. Pergamon Press, Oxford, London, New YorkGoogle Scholar
  98. Kul M, Oskay KO, Temizkan A, Karaca B, Kumruoğlu LC, Topçu B (2016) Effect of boronizing composition on boride layer of boronized GGG-60 ductile cast iron. Vacuum 126:80–83CrossRefGoogle Scholar
  99. Kulka M, Pertek A (2003a) Microstructure and properties of borided 41Cr4 steel after laser surface modification with re-melting. Appl Surf Sci 214:278–288CrossRefGoogle Scholar
  100. Kulka M, Pertek A (2003b) The importance of carbon content beneath iron borides after boriding of chromium and nickel-based low-carbon steel. Appl Surf Sci 214:161–171CrossRefGoogle Scholar
  101. Kulka M, Pertek A (2003c) Characterization of complex (B–C–N) diffusion layers formed on chromium and nickel-based low-carbon steel. Appl Surf Sci 218:113–122CrossRefGoogle Scholar
  102. Kulka M, Pertek A (2004) Microstructure and properties of borocarburized 15CrNi6 steel after laser surface modification. Appl Surf Sci 236:98–105CrossRefGoogle Scholar
  103. Kulka M, Pertek A (2007) Laser surface modification of carburized and borocarburized 15CrNi6 steel. Mater Charact 58(5):461–470CrossRefGoogle Scholar
  104. Kulka M, Pertek A (2008) Gradient formation of boride layers by borocarburizing. Appl Surf Sci 254:5281–5290CrossRefGoogle Scholar
  105. Kulka M, Pertek A, Klimek L (2006) The influence of carbon content in the borided Fe-alloys on the microstructure of iron borides. Mater Charact 56:232–240CrossRefGoogle Scholar
  106. Kulka M, Pertek A, Makuch N (2011) The importance of carbon concentration-depth profile beneath iron borides for low-cycle fatigue strength. Mater Sci Eng A 528:8641–8650CrossRefGoogle Scholar
  107. Kulka M, Makuch N, Pertek A, Piasecki A (2012a) An alternative method of gas boriding applied to the formation of borocarburized layer. Mater Charact 72:59–67CrossRefGoogle Scholar
  108. Kulka M, Makuch N, Pertek A, Piasecki A (2012b) Microstructure and properties of borocarburized and laser-modified 17CrNi6-6 steel. Opt Laser Technol 44:872–881CrossRefGoogle Scholar
  109. Kulka M, Makuch N, Pertek A, Małdziński L (2013) Simulation of the growth kinetics of boride layers formed on Fe during gas boriding in H2–BCl3 atmosphere. J Solid State Chem 199:196–203CrossRefGoogle Scholar
  110. Kulka M, Makuch N, Popławski M (2014) Two-stage gas boriding of Nisil in N2–H2–BCl3 atmosphere. Surf Coat Technol 244:78–86CrossRefGoogle Scholar
  111. Kulka M, Makuch N, Piasecki A (2017) Nanomechanical characterization and fracture toughness of FeB and Fe2B iron borides produced by gas boriding of Armco iron. Surf Coat Technol 325:515–532CrossRefGoogle Scholar
  112. Kunst H, Schaaber O (1967) Beobachtungen beim Oberflaechenborieren von Stahl III. Haerterei Tech Mit 22(4):275–292Google Scholar
  113. Küper A, Qiao X, Stock HR, Mayr P (2000) A novel approach to gas boronizing. Surf Coat Technol 130:87–94CrossRefGoogle Scholar
  114. Kuznetsov SA, Kuznetsova SV, Rebrov EV, Mies MJM, de Croon MHJM, Schouten JC (2005) Synthesis of molybdenum borides and molybdenum silicides in molten salts and their oxidation behavior in an air–water mixture. Surf Coat Technol 195:182–188CrossRefGoogle Scholar
  115. Kuznetsov SA, Rebrov EV, Mies MJM, de Croon MHJM, Schouten JC (2006) Synthesis of protective Mo–Si–B coatings in molten salts and their oxidation behavior in an air–water mixture. Surf Coat Technol 201:971–978CrossRefGoogle Scholar
  116. Lakhtin YuM, Pchelkina MA (1961) Boronizing of high-alloy steels. Metalloved Term Obrab Met (Met Sci Heat Treat) 3(3–4):111–114Google Scholar
  117. Laubengayer AW, Hurd DT, Newkirk AE, Hoard JL (1943) Boron. I. Preparation and properties of pure crystalline boron. J Am Chem Soc 65:1924–1931CrossRefGoogle Scholar
  118. Li C, ShenB Li G, Yang C (2008) Effect of boronizing temperature and time on microstructure and abrasion wear resistance of Cr12Mn2V2 high chromium cast iron. Surf Coat Technol 202:5882–5886CrossRefGoogle Scholar
  119. Lou DC, Onsøien MI, Akselsen OM (2007) Patent application no. N2007 0885Google Scholar
  120. Lou DC, Solberg JK, Akselsen OM, Dahl N (2009) Microstructure and property investigation of paste boronized pure nickel and Nimonic 90 superalloy. Mater Chem Phys 115:239–244CrossRefGoogle Scholar
  121. Lyakhovich LS, Kosachevskii LN, Dolmanov FV, Krukovich MG (1972) Liquid processes of chemical heat treatment without electrolysis. Metalloved Term Obrab Met (Met Sci Heat Treat) 2:61–62Google Scholar
  122. Lyakhovich LS, Kosachevskii LN et al (1973) USSR Patent No. 32768, Biul. Izobret. i Tow. Znakov, 33, p 85Google Scholar
  123. Lyakhovich LS et al (1974) Multicomponent diffusion coating. Naukova dumka, Minsk, pp 99–118Google Scholar
  124. Lyakhovich LS, Dolmanov FV, Isakov SA (1982) Boriding of steels in gaseous media. Metalloved Term Obrab Met (Met Sci Heat Treat) 4:25–28Google Scholar
  125. Makuch N, Kulka M (2014) Microstructural characterization and some mechanical properties of gas-borided Inconel 600-alloy. Appl Surf Sci 314:1007–1018CrossRefGoogle Scholar
  126. Makuch N, Kulka M (2016) Fracture toughness of hard ceramic phases produced on Nimonic 80A-alloy by gas boriding. Ceram Int 42:3275–3289CrossRefGoogle Scholar
  127. Makuch N, Kulka M, Piasecki A (2015) The effects of chemical composition of Nimonic 80A-alloy on the microstructure and properties of gas-borided layer. Surf Coat Technol 276:440–455CrossRefGoogle Scholar
  128. Makuch N, Kulka M, Paczkowska M (2017a) Nanomechanical properties of gas-borided layer produced on Nimonic 80A-alloy. Ceram Int 43:8255–8261CrossRefGoogle Scholar
  129. Makuch N, Kulka M, Mikołajczak D (2017b) Corrosion behavior of hard boride layer produced on Nimonic 80A-Alloy by gas boriding. Trans Indian Inst Met.  https://doi.org/10.1007/s12666-017-1113-yCrossRefGoogle Scholar
  130. Makyta M, Matiašovský K, Fellner P (1984) Mechanism of the cathode process in the electrolytic boriding in molten salts. Electrochim Acta 29(12):1653–1657CrossRefGoogle Scholar
  131. Mariani FE, Takeya GS, Casteletti LC (2015a) Boroaustempering treatment on alloyed ductile irons. In: Proceedings of the 28th ASM heat treating society conference, Oct 20–22, Detroit, Michigan, USA, pp 686–691Google Scholar
  132. Mariani FE, Rego GC, Casteletti LC (2015b) Study of boriding kinetics for alloyed ductile irons. In: Proceedings of the 28th ASM heat treating society conference, Oct 20–22, Detroit, Michigan, USA, pp 696–701Google Scholar
  133. Martin GR (1949), U.S. Patent No. 2484519Google Scholar
  134. Matiašovský K, Chrenková-Paučírová M, Fellner P, Makyta M (1988) Electrochemical and thermochemical boriding in molten salts. Surf Coat Technol 35:133–149CrossRefGoogle Scholar
  135. McBride CC, Spretnak IW, Speiser R (1954) A study of the Fe-Fe2B system. Trans Am Soc Met 46:499–524Google Scholar
  136. Meléndez E, Campos I, Rocha E, Barron MA (1997) Structural and strength characterization of steels subjected to boriding thermochemical process. Mater Sci Eng A 234–236:900–903CrossRefGoogle Scholar
  137. Meneses-Amador A, Campos-Silva I, Martínez-Trinidad J, Panier S, Figueroa-López U, Torres-Hernández A (2013) An expression to determine the Vickers indentation fracture toughness obtained by the finite element method on Fe2B layers. Surf Coat Technol 215:285–290CrossRefGoogle Scholar
  138. Mindivan H (2016) Investigation of thermochemical boriding effect on wear behavior of a GGG 50 quality as-cast ductile iron. Ind Lubr Tribol 68(4):476–481CrossRefGoogle Scholar
  139. Minkevich AN (1950) Khimiko-termicheskaya obrabotka stali. Maszgiz, MoskvaGoogle Scholar
  140. Minkevich AN (1965) Khimiko-termicheskaya obrabotka metallov i splavov. Mashinostroenie, MoskvaGoogle Scholar
  141. Minkevich AN, Ulybin GN (1959) Chromizing and boronizing of steel with induction heating. Metalloved Term Obrab Met (Met Sci Heat Treat) 1(4):48–51Google Scholar
  142. Młynarczak A (2005) Modyfikowanie budowy i właściwości jedno- i wieloskładnikowych warstw węglików chromu, wanadu i tytanu wytwarzanych na stalach metodą proszkową (Modification of structure and properties of single- and multicomponent diffusion layers of chromium, vanadium and titanium carbides produced on steels by powder-pack method). Dissertation No. 396, Publishing House of Poznan University of Technology, Poznan, ISBN 83-7143-336-0 (in Polish)Google Scholar
  143. Młynarczak A, Jóźwiak K, Mesmacque G (2003) Wear resistance of multiphase diffusion carbide coatings. Adv Eng Mater 5(11):789–793CrossRefGoogle Scholar
  144. Moss N (1947) National Research Council of Canada, Atomic Energy Project (NRC No. 1950), Chalk River, OntarioGoogle Scholar
  145. Nawrocki M, Piasecki A (2002) Abrasive wear resistance carbide and boride diffusion layers formed on tool steels. Inż Materiałowa-Mater Eng 5(130):323–327 (in Polish)Google Scholar
  146. Ortiz-Domínguez M, Campos-Silva I, Ares de Parga G, Martínez-Trinidad J, Jiménez-Reyes MY, Rodríguez-Castro G, Hernández-Sánchez E (2012) The effective boron diffusion coefficient in Fe2B layers with the presence of chemical stresses. Kovove Mater 50:115–123Google Scholar
  147. Ozbek I, Bindal C (2002) Mechanical properties of boronized AISI W4 steel. Surf Coat Technol 154:14–20CrossRefGoogle Scholar
  148. Ozbek I, Bindal C (2011) Kinetics of borided AISI M2 high speed steel. Vacuum 86:391–397CrossRefGoogle Scholar
  149. Ozbek I, Akbulut H, Zeytin S, Bindal C, Üçisik AH (2000) The characterization of borided 99.5% purity nickel. Surf Coat Technol 126:166–170CrossRefGoogle Scholar
  150. Pchelkina MA, Lakhtin YM (1960) Boronizing in a boron trichloride atmosphere. Metalloved Term Obrab Met (Met Sci Heat Treat) 7:40–42Google Scholar
  151. Pertek A (1994) Gas boriding condition for the iron borides layers formation. Mater Sci Forum 163–165:323–328CrossRefGoogle Scholar
  152. Pertek A (2001) Kształtowanie struktury i właściwości warstw borków żelaza otrzymywanych w procesie borowania gazowego (The structure formation and the properties of boronized layers obtained in gaseous boriding process) Dissertation No. 365, Publishing House of Poznan University of Technology, Poznan, ISBN 83-7143-262-2 (in Polish)Google Scholar
  153. Pertek A, Kulka M (2002a) Characterization of complex (B + C) diffusion layers formed on chromium and nickel-based low-carbon steel. Appl Surf Sci 202:252–260CrossRefGoogle Scholar
  154. Pertek A, Kulka M (2002b) Microstructure and properties of composite (B + C) diffusion layers on low-carbon steel. J Mater Sci 37:1–5Google Scholar
  155. Pertek A, Kulka M (2003a) Characterization of single tracks after laser surface modification of borided 41Cr4 steel. Appl Surf Sci 205:137–142CrossRefGoogle Scholar
  156. Pertek A, Kulka M (2003b) Two-step treatment carburizing followed by boriding on medium-carbon steel. Surf Coat Technol 173:309–314CrossRefGoogle Scholar
  157. Petrova RS, Suwattananont N, Samardzic V (2008) The effect of boronizing on metallic alloys for automotive applications. J Mater Eng Perform 17(3):340–345CrossRefGoogle Scholar
  158. Piasecki A, Młynarczak A (2003) The influence of composition of borochromizing mixture on structure and properties of diffusion layers formed on tool steels. Inż Materiałowa-Mater Eng 6(137):543–546Google Scholar
  159. Prosvirin WI, Locmanov GS (1965) USSR Patent No. 171876, Biul. Izobret. i Tow. Znakov, 12, p 21Google Scholar
  160. Przybyłowicz K (2000) Teoria i praktyka borowania stali (Theory and practice of steel boronizing). Publishing House of Kielce University of Technology, Kielce in Polish PL ISSN 0239-4979Google Scholar
  161. Rayane K, Allaoui O (2015) Application of artificial neural network for prediction of boride layer depth obtained on XC38 steel in molten salts. Defect Diffus Forum 365:194–199CrossRefGoogle Scholar
  162. Reynoldson RW (1993) Heat treatment in fluidized bed furnaces. The Materials Information Society, ASM International, Materials Park, OHGoogle Scholar
  163. Ribeiro R, Ingole S, Usta M, Bindal C, Üçisik AH, Liang H (2006) Tribological characteristics of boronized niobium for biojoint applications. Vacuum 80:1341–1345CrossRefGoogle Scholar
  164. Ribeiro R, Ingole S, Usta M, Bindal C, Üçisik AH, Liang H (2007) Tribological investigation of tantalum boride coating under dry and simulated body fluid conditions. Wear 262:1380–1386CrossRefGoogle Scholar
  165. Rodríguez-Castro G, Campos-Silva I, Chávez-Gutiérrez E, Martínez-Trinidad J, Hernández-Sánchez E, Torres-Hernández A (2013) Mechanical properties of FeB and Fe2B layers estimated by Berkovich nanoindentation on tool borided steel. Surf Coat Technol 215:291–299CrossRefGoogle Scholar
  166. Rodríguez-Castro GA, Reséndiz-Calderon CD, Jiménez-Tinoco LF, Meneses-Amador A, Gallardo-Hernández EA, Campos-Silva IE (2015) Micro-abrasive wear resistance of CoB/Co2B coatings formed in CoCrMo alloy. Surf Coat Technol 284:258–263CrossRefGoogle Scholar
  167. Sagon-King RF (1991) Fluidized-bed equipment. In: ASM handbook, vol 04—heat treating. ASM International Handbook Committee, ASM International, Cleveland, OHGoogle Scholar
  168. Sarma B, Tikekar NM, RaviChandran KS (2012) Kinetics of growth of superhard boride layers during solid state diffusion of boron into titanium. Ceram Int 38:6795–6805CrossRefGoogle Scholar
  169. Segers L, Fontana A, Winand R (1991) Electrochemical boriding of iron in molten salts. Electrochim Acta 36(1):41–47CrossRefGoogle Scholar
  170. Sen S (2005) The characterization of vanadium boride coatings on AISI 8620 steel. Surf Coat Technol 190:1–6CrossRefGoogle Scholar
  171. Sen U, Sen S, Yilmaz F (2004) Structural characterization of boride layer on boronized ductile irons. Surf Coat Technol 176:222–228CrossRefGoogle Scholar
  172. Sezgi NA, Doğu T, Özbelge HÖ (1997) BHCl2 formation during chemical vapor deposition of boron in a dual-impinging jet reactor. Ind Eng Chem Res 36:5537–5540CrossRefGoogle Scholar
  173. Simonenko AN, Shestakov VA, Poboinya VN (1982) Liquid boriding in induction salt baths. Metalloved Term Obrab Met (Met Sci Heat Treat) 24(5):360–361CrossRefGoogle Scholar
  174. Simonenko AN, Poroshin VV, Antia PK (1985) Aging of salt baths with electrolysis-free liquid boriding. Metalloved Term Obrab Met (Met Sci Heat Treat) 27(1):13–16CrossRefGoogle Scholar
  175. Sista V, Kahvecioglu O, Eryilmaz OL, Erdemir A, Timur S (2011) Electrochemical boriding and characterization of AISI D2 tool steel. Thin Solid Films 520:1582–1588CrossRefGoogle Scholar
  176. Sista V, Kahvecioglu O, Kartal G, Zeng QZ, Kim JH, Eryilmaz OL, Erdemir A (2013) Evaluation of electrochemical boriding of Inconel 600. Surf Coat Technol 215:452–459CrossRefGoogle Scholar
  177. Skugorova LP, Nechaev AI (1973) Investigation of the gas boriding process. Metalloved Term Obrab Met (Met Sci Heat Treat) 11:61–62Google Scholar
  178. Skugorova LP, Shlykov VI, Nechaev AI (1972) Apparatus and technology of gas boriding. Metalloved Term Obrab Met (Met Sci Heat Treat) 5:61–62Google Scholar
  179. Takeuchi E, Fujii K, Katagiri T (1979) Sliding wear characteristics of gas boronized steel. Wear 55:121–130CrossRefGoogle Scholar
  180. Tarakci M, Gencer Y, Çalik A (2010) The pack-boronizing of pure vanadium under a controlled atmosphere. Appl Surf Sci 256:7612–7618CrossRefGoogle Scholar
  181. Tikekar NM, Ravi Chandran KS, Sanders A (2007) Nature of growth of dual titanium boride layers with nanostructured titanium boride whiskers on the surface of titanium. Scripta Mater 57:273–276CrossRefGoogle Scholar
  182. Topuz P, Çiçek B, Akar O (2016) Kinetic investigation of AISI 304 steel boronized in indirect heated fluidized bed furnace. J Min Metall Sect B 52(1):63–68CrossRefGoogle Scholar
  183. Torun O, Çelikyürek I (2009) Boriding of diffusion bonded joints of pure nickel to commercially pure titanium. Mater Des 30:1830–1834CrossRefGoogle Scholar
  184. Tsipas DN, Anthymidis KG, Flitris Y (2003) Deposition of hard and/or corrosion resistant, single and multielement coatings on ferrous and nonferrous alloys in a fluidized bed reactor. J Mater Process Technol 134:145–152CrossRefGoogle Scholar
  185. Üçisik AH, Bindal C (1997) Fracture toughness of boride formed on low-alloys steels. Surf Coat Technol 94–95:561–565CrossRefGoogle Scholar
  186. Ueda N, Mizukoshi T, Demizu K, Sone T, Ikenaga A, Kawamoto M (2000) Boriding of nickel by the powder-pack method. Surf Coat Technol 126:25–30CrossRefGoogle Scholar
  187. Usta M (2005) The characterization of borided pure niobium. Surf Coat Technol 194:251–255CrossRefGoogle Scholar
  188. Usta M, Ozbek I, Ipek M, Bindal C, Üçisik AH (2005) The characterization of borided pure tungsten. Surf Coat Technol 194:330–334CrossRefGoogle Scholar
  189. Uzunov N, Ivanov R (2004) Aluminothermic powder boriding of steel. Appl Surf Sci 225:72–77CrossRefGoogle Scholar
  190. Voroshnin LG, Lyakhovich LS (1978) Borirovanie stali. Metallurgiâ, MoskvaGoogle Scholar
  191. Wahl G (1975) Durferrit-technical information. Reprint from VDI, Z117, pp 785–789Google Scholar
  192. Weintraub E (1911) On the properties and preparation of the element boron. Ind Eng Chem 3(5):299–301CrossRefGoogle Scholar
  193. Winter KM, Kalucki J, Koshel D (2014) Process technologies for thermochemical surface engineering. In: Mittemeijer EJ, Sommers MAJ (eds) Thermochemical surface engineering of steels: improving materials performance. Woodhead Publishing series in metals and surface engineering: number 62, pp 141–206CrossRefGoogle Scholar
  194. Yokota H, Suzuki T (2005) Improvement in the oxidation of TiAl by molten salt boronizing. Tetsu-to-Hagane (J Iron Steel Inst Jpn) 91(1):217–223CrossRefGoogle Scholar
  195. Yokota H, Kudoh T, Suzuki T (2003) Oxidation resistance of boronized MoSi2. Surf Coat Technol 169–170:171–173CrossRefGoogle Scholar
  196. Yukin GI (1971) The mechanism of electroplating with boron. Metalloved Term Obrab Met (Met Sci Heat Treat) 8:42–45Google Scholar
  197. Zemskov GM, Kaidash NG, Praven’kaya LL (1964) Boriding iron and steel in vacuum. Metalloved Term Obrab Met (Met Sci Heat Treat) 3:61–63Google Scholar
  198. Zhigach AF, Antonov IS, Pchelkina MA, Yukin GI, Dobrodeev AS, Matveev VN (1959) Surface impregnation of steel with boron from the gas phase. Metalloved Term Obrab Met (Met Sci Heat Treat) 4:45–47Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Materials Science and EngineeringPoznań University of TechnologyPoznańPoland

Personalised recommendations