Advertisement

Borided Materials

  • Michal KulkaEmail author
Chapter
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

All the materials, subjected to boronizing using different techniques, were indicated in this chapter. They were classified into two main groups: iron alloys and non-ferrous materials. The preliminary analysis of the produced microstructure was presented. The most popular materials with boride layers were marked with the boxes drawn in a broken line. Boride coatings could be produced on any metal alloy under certain conditions.

References

  1. Anthymidis KG, Stergioudis G, Roussos D, Zinoviadis P, Tsipas DN (2002) Boriding of ferrous and non-ferrous metals in fuidised bed reactor. Surf Eng 18(4):255–259CrossRefGoogle Scholar
  2. Ataibis V, Taktak S (2015) Characteristics and growth kinetics of plasma paste borided Cp–Ti and Ti6Al4 V alloy. Surf Coat Technol 279:65–71CrossRefGoogle Scholar
  3. Atar E, Kayali ES, Cimenoglu H (2008) Characteristics and wear performance of borided Ti6Al4 V alloy. Surf Coat Technol 202:4583–4590CrossRefGoogle Scholar
  4. Azouani O, Keddam M, Allaoui O, Sehisseh A (2017) Characterization of boride coatings on a ductile cast iron. Prot Met Phys Chem Surf 53(2):306–311CrossRefGoogle Scholar
  5. Çalik A, Karakaş MS, Ucar N, Ünüvar F (2014) Boriding kinetics of pure cobalt. Kovove Mat 52(2):107–112Google Scholar
  6. Campos-Silva I, Ortiz-Domínguez M, Keddam M, López-Perrusquia N, Carmona-Vargas A, Elías-Espinosa M (2009) Kinetics of the formation of Fe2B layers in gray cast iron: effects of boron concentration and boride incubation time. Appl Surf Sci 255:9290–9295CrossRefGoogle Scholar
  7. Campos-Silva I, Ortiz-Domínguez M, Lopez-Perrusquia N, Meneses-Amador A, Escobar-Galindo R, Martínez-Trinidad J (2010) Characterization of AISI 4140 borided steels. Appl Surf Sci 256:2372–2379CrossRefGoogle Scholar
  8. Campos-Silva I, Martínez-Trinidad J, Doñu-Ruíz MA, Rodríguez-Castro G, Hernández-Sánchez E, Bravo-Bárcenas O (2011) Interfacial indentation test of FeB/Fe2B coatings. Surf Coat Technol 206:1809–1815CrossRefGoogle Scholar
  9. Campos-Silva I, Flores-Jiménez M, Rodríguez-Castro G, Hernández-Sánchez E, Martínez-Trinidad J, Tadeo-Rosas R (2013a) Improved fracture toughness of boride coating developed with a diffusion annealing process. Surf Coat Technol 237:429–439CrossRefGoogle Scholar
  10. Campos-Silva I, Hernández-Sánchez E, Rodríguez-Castro G, Cimenoglu H, Nava-Sánchez JL, Meneses-Amador A, Carrera-Espinoza R (2013b) A study of indentation for mechanical characterization of the Fe2B layer. Surf Coat Technol 232:173–181CrossRefGoogle Scholar
  11. Campos-Silva I, Bravo-Bárcenas D, Meneses-Amador A, Ortiz-Domínguez M, Cimenoglu H, Figueroa-López U, Andraca-Adame J (2013c) Growth kinetics and mechanical properties of boride layers formed at the surface of the ASTM F-75 biomedical alloy. Surf Coat Technol 237:402–414CrossRefGoogle Scholar
  12. Campos-Silva I, Bravo-Bárcenas D, Cimenoglu H, Figueroa-López U, Flores-Jiménez M, Meydanoglu O (2014) The boriding process in CoCrMo alloy: Fracture toughness in cobalt boride coatings. Surf Coat Technol 260:362–368CrossRefGoogle Scholar
  13. Chang FM, Wu ZZ, Lin YF, Ch Kao L, Wu CT, JangJian SK, Chen YN, Lo KY (2018) Damage and annealing recovery of boron-implanted ultra-shallow junction: The correlation between beam current and surface configuration. Appl Surf Sci 433:160–165CrossRefGoogle Scholar
  14. Chen H, Xu C, Chen J, Zhao H, Zhang L, Wang Z (2008) Microstructure and phase transformation of WC/Ni60B laser cladding coatings during dry sliding wear. Wear 264:487–493CrossRefGoogle Scholar
  15. Dikici B, Ozdemir I (2012) FeB and FeB/h-BN based anti-corrosive composite coatings for aluminium alloys. Anti-Corros Methods Mater 59(5):246–254CrossRefGoogle Scholar
  16. Filip R, Sieniawski J, Pleszakov E (2006) Formation of surface layers on Ti–6Al–4 V titanium alloy by laser alloying. Surf Eng 22(1):53–57CrossRefGoogle Scholar
  17. Hemmati I, Ocelík V, De Hosson JThM (2013) Toughening mechanism for Ni–Cr–B–Si–C laser deposited coatings. Mater Sci Eng, A 582:305–315CrossRefGoogle Scholar
  18. Hernández-Sanchez E, Rodriguez-Castro G, Meneses-Amador A, Bravo-Bárcenas D, Arzate-Vazquez I, Martínez-Gutiérrez H, Romero-Romo M, Campos-Silva I (2013) Effect of the anisotropic growth on the fracture toughness measurements obtained in the Fe2B layer. Surf Coat Technol 237:292–298CrossRefGoogle Scholar
  19. Horlock AJ, McCartney DG, Shipway PH, Wood JV (2002) Thermally sprayed Ni(Cr)–TiB2 coatings using powder produced by self-propagating high temperature synthesis: microstructure and abrasive wear behaviour. Mater Sci Eng, A 336:88–98CrossRefGoogle Scholar
  20. Huang C, Zhang B, Lan H, Du L, Zhang W (2014) Friction properties of high temperature boride coating under dry air and water vapor ambiences. Ceram Int 40:12403–12411CrossRefGoogle Scholar
  21. Jin HW, Park CG, Kim MC (1999) Microstructure and amorphization induced by frictional work in Fe–Cr–B alloy thermal spray coatings. Surf Coat Technol 113:103–112CrossRefGoogle Scholar
  22. Johnston JM, Baker P, Catledge SA (2016) Improved nanostructured diamond adhesion on cemented tungsten carbide with boride interlayers. Diam Relat Mater 69:114–120CrossRefGoogle Scholar
  23. Kh Kadyrov V, Polishchuk E, Khairutdinov AM (1985) Protective properties of detonation-deposited coatings from powders alloyed with aluminum and boron. Poroshk Metall/Powder Metall Met Ceram 8(272):52–55Google Scholar
  24. Kaestner P, Olfe J, Rie KT (2001) Plasma-assisted boriding of pure titanium and TiAl6V4. Surf Coat Technol 142–144:248–252CrossRefGoogle Scholar
  25. Kartal G, Timur S, Urgen M, Erdemir A (2010) Electrochemical boriding of titanium for improved mechanical properties. Surf Coat Technol 204:3935–3939CrossRefGoogle Scholar
  26. Keddam M, Chegroune R (2010) A model for studying the kinetics of the formation of Fe2B boride layers at the surface of a gray cast iron. Appl Surf Sci 256:5025–5030CrossRefGoogle Scholar
  27. Khor KA, Yu LG, Sundararajan G (2005) Formation of hard tungsten boride layer by spark plasma sintering boriding. Thin Solid Films 478:232–237CrossRefGoogle Scholar
  28. Kim H-J, Yoon B-H, Lee C-H (2001) Wear performance of the Fe-based alloy coatings produced by plasma transferred arc weld-surfacing process. Wear 249:846–852CrossRefGoogle Scholar
  29. Kulka M, Pertek A (2003) Microstructure and properties of borided 41Cr4 steel after laser surface modification with re-melting. Appl Surf Sci 214:278–288CrossRefGoogle Scholar
  30. Kulka M, Dziarski P, Makuch N, Piasecki A, Miklaszewski A (2013a) Microstructure and properties of laser-borided Inconel 600-alloy. Appl Surf Sci 284:757–771CrossRefGoogle Scholar
  31. Kulka M, Makuch N, Pertek A (2013b) Microstructure and properties of laser-borided 41Cr4 steel. Opt Laser Technol 45:308–318CrossRefGoogle Scholar
  32. Kulka M, Makuch N, Dziarski P, Piasecki A, Miklaszewski A (2014) Microstructure and properties of laser-borided composite layers formed on commercially pure titanium. Opt Laser Technol 56:409–424CrossRefGoogle Scholar
  33. Kusmanov SA, Silkin SA, Smirnov AA, Belkin PN (2017) Possibilities of increasing wear resistance of steel surface by plasma electrolytic treatment. Wear 386–387:239–246CrossRefGoogle Scholar
  34. Li C, ShenB Li G, Yang C (2008) Effect of boronizing temperature and time on microstructure and abrasion wear resistance of Cr12Mn2V2 high chromium cast iron. Surf Coat Technol 202:5882–5886CrossRefGoogle Scholar
  35. Liao PK, Spear KE (1988) The B − Co (Boron-Cobalt) system. Bull Alloy Phase Diagrams 9(4):452–457CrossRefGoogle Scholar
  36. Liao PK, Spear KE (1990) B-Fe (Boron-Iron). In: Massalski TB (ed) Binary alloy phase diagrams, 2nd edn. ASM International, Metals Park, OH, pp 480–482Google Scholar
  37. Liao PK, Spear KE (1991) B-Ni (Boron-Nickel). In: Nash P (ed) Phase diagrams of binary nickel alloys’ ASM International, Materials Park, OH, pp 31–36Google Scholar
  38. Liao PK, Spear KE (1993) B-Fe (Boron-Iron) In: Okamoto H (ed) Phase diagrams of binary iron alloys’ ASM International, Materials Park, OH, pp 41–47Google Scholar
  39. Lou DC, Solberg JK, Akselsen OM, Dahl N (2009) Microstructure and property investigation of paste boronized pure nickel and Nimonic 90 superalloy. Mater Chem Phys 115:239–244CrossRefGoogle Scholar
  40. Majumdar JD, Li L (2010) Development of titanium boride (TiB) dispersed titanium (Ti) matrix composite by direct laser cladding. Mater Lett 64:1010–1012CrossRefGoogle Scholar
  41. Makuch N, Kulka M (2014) Microstructural characterization and some mechanical properties of gas-borided Inconel 600-alloy. Appl Surf Sci 314:1007–1018CrossRefGoogle Scholar
  42. Makuch N, Kulka M, Dziarski P, Przestacki D (2014) Laser surface alloying of commercially pure titanium with boron and carbon. Opt Lasers Eng 57:64–81CrossRefGoogle Scholar
  43. Makuch N, Kulka M, Piasecki A (2015a) The effects of chemical composition of Nimonic 80A-alloy on the microstructure and properties of gas-borided layer. Surf Coat Technol 276:440–455CrossRefGoogle Scholar
  44. Makuch N, Piasecki A, Dziarski P, Kulka M (2015b) Influence of laser alloying with boron and niobium on microstructure and properties of Nimonic 80A-alloy. Opt Laser Technol 75:229–239CrossRefGoogle Scholar
  45. Makuch N, Kulka M, Keddam M, Taktak S, Ataibis V, Dziarski P (2017) Growth kinetics and some mechanical properties of two-phase boride layers produced on commercially pure titanium during plasma paste boriding. Thin Solid Films 626:25–37CrossRefGoogle Scholar
  46. Mann BS, Arya V, Pant BK (2011) Enhanced erosion protection of TWAS coated Ti6Al4 V alloy using boride bond coat and subsequent laser treatment. J Mater Eng Perform 20(6):932–940CrossRefGoogle Scholar
  47. Mariani FE, Takeya GS, Casteletti LC (2015a) Boroaustempering treatment on alloyed ductile irons. Proceedings of the 28th ASM heat treating society conference, October 20–22, Detroit, Michigan, USA, pp 686–691Google Scholar
  48. Mariani FE, Rego GC, Casteletti LC (2015b) Study of boriding kinetics for alloyed ductile irons. Proceedings of the 28th ASM heat treating society conference, October 20–22, Detroit, Michigan, USA, pp. 696–701Google Scholar
  49. Milési F, Coig M, Lerat JF, Desrues T, Le Perchec J, Lanterne A, Lachal L, Mazen F (2017) Homojunction silicon solar cells doping by ion implantation. Nuclear Instruments Methods Phys Res B 409:53–59CrossRefGoogle Scholar
  50. Mindivan H (2016) Investigation of thermochemical boriding effect on wear behavior of a GGG 50 quality as-cast ductile iron. Ind Lubr Tribol 68(4):476–481CrossRefGoogle Scholar
  51. Murray JL, Liao PK, Spear KE (1986) The B–Ti (Boron–Titanium) system. Bull Alloy Phase Diagrams 7(6):550–555CrossRefGoogle Scholar
  52. Murray JL, Liao PK, Spear KE (1992) In: Baker H (ed) ASM Handbook: alloy Phase Diagrams, vol 3, ASM International, Materials Park, OH, p 2Google Scholar
  53. Nedaiborshch SD, Shchepetov VV (2014) Wear resistance of detonation-sprayed Cr-Si-B coatings under friction at elevated temperatures. Poroshk Metall/Powder Metall Met Ceram 53(1–2):64–69CrossRefGoogle Scholar
  54. Ozbek I, Bindal C (2002) Mechanical properties of boronized AISI W4 steel. Surf Coat Technol 154:14–20CrossRefGoogle Scholar
  55. Ozbek I, Bindal C (2011) Kinetics of borided AISI M2 high speed steel. Vacuum 86:391–397CrossRefGoogle Scholar
  56. Paczkowska M, Ratuszek W, Waligóra W (2010) Microstructure of laser boronized nodular iron. Surf Coat Technol 205:2542–2545CrossRefGoogle Scholar
  57. Pomel’nikova AS, Shipko MN, Stepovich MA (2011) Features of structural changes due to the formation of the boride crystal structure in steels. J Surf Inv 5:298–304CrossRefGoogle Scholar
  58. Ribeiro R, Ingole S, Usta M, Bindal C, Üçisik AH, Liang H (2006) Tribological characteristics of boronized niobium for biojoint applications. Vacuum 80:1341–1345CrossRefGoogle Scholar
  59. Rodríguez-Castro G, Campos-Silva I, Chávez-Gutiérrez E, Martínez-Trinidad J, Hernández-Sánchez E, Torres-Hernández A (2013) Mechanical properties of FeB and Fe2B layers estimated by Berkovich nanoindentation on tool borided steel. Surf Coat Technol 215:291–299CrossRefGoogle Scholar
  60. Sakata K, Nakano K, Miyahara H, Matsubara Y, Ogi K (2007) Microstructure control of thermally sprayed Co-Based self-fluxing alloy coatings by diffusion treatment. J Therm Spray Technol 16(5–6):991–997CrossRefGoogle Scholar
  61. Shankar P, Karthikeyan NR, Kamaraj M, Angelo PC (2010) Laser modification of detonation-gun sprayed ferro-boron coatings on AISI 304L SS. Trans Indian Inst Met 64(3):751–756CrossRefGoogle Scholar
  62. Sharma P, Majumdar JD (2012) Surface characterization and mechanical properties’ evaluation of boride-dispersed nickel-based coatings deposited on copper through thermal spray routes. J Therm Spray Technol 21(5):800–809CrossRefGoogle Scholar
  63. Sidhu TS, Prakash S, Agrawal RD (2006) Hot corrosion behaviour of HVOF-sprayed NiCrBSi coatings on Ni- and Fe-based superalloys in Na2SO4–60% V2O5 environment at 900 °C. Acta Mater 54:773–784CrossRefGoogle Scholar
  64. Sista V, Kahvecioglu O, Kartal G, Zeng QZ, Kim JH, Eryilmaz OL, Erdemir A (2013) Evaluation of electrochemical boriding of Inconel 600. Surf Coat Technol 215:452–459CrossRefGoogle Scholar
  65. Storozhenko MS, Umanskii AP, Terentiev AE, Zakiev IM (2017) Effect of the structure of TiB2–(Fe–Mo) plasma coatings on mechanical and tribotechnical properties. Poroshk Metall/Powder Metall Met Ceram 56(1–2):60–69CrossRefGoogle Scholar
  66. Sudha C, Shankar P, Subba Rao RV, Thirumurugesan R, Vijayalakshmi M, Raj B (2008) Microchemical and microstructural studies in a PTA weld overlay of Ni–Cr–Si–B alloy on AISI 304L stainless steel. Surf Coat Technol 202:2103–2112CrossRefGoogle Scholar
  67. Tarakci M, Gencer Y, Çalik A (2010) The pack-boronizing of pure vanadium under a controlled atmosphere. Appl Surf Sci 256:7612–7618CrossRefGoogle Scholar
  68. Tikekar NM, Ravi Chandran KS, Sanders A (2007) Nature of growth of dual titanium boride layers with nanostructured titanium boride whiskers on the surface of titanium. Scripta Mater 57:273–276CrossRefGoogle Scholar
  69. Tillmann W, Hollingsworth PS, Fischer G, Nellesen J, Beckmann F (2014) Development and characterization of B4C reinforced detonation-sprayed Al coatings. J Therm Spray Technol 23(3):289–295CrossRefGoogle Scholar
  70. Üçisik AH, Bindal C (1997) Fracture toughness of boride formed on low-alloys steels. Surf Coat Technol 94–95:561–565CrossRefGoogle Scholar
  71. Ueda N, Mizukoshi T, Demizu K, Sone T, Ikenaga A, Kawamoto M (2000) Boriding of nickel by the powder-pack method. Surf Coat Technol 126:25–30CrossRefGoogle Scholar
  72. Usta M (2005) The characterization of borided pure niobium. Surf Coat Technol 194:251–255CrossRefGoogle Scholar
  73. Usta M, Ozbek I, Ipek M, Bindal C, Üçisik AH (2005) The characterization of borided pure tungsten. Surf Coat Technol 194:330–334CrossRefGoogle Scholar
  74. Yu LG, Khor KA, Sundararajan G (2006) Boride layer growth kinetics during boriding of molybdenum by the Spark Plasma Sintering (SPS) technology. Surf Coat Technol 201:2849–2853CrossRefGoogle Scholar
  75. Zhao Z, Li H, Yang T, Zhu H (2018) Tribological properties of HVOF-sprayed TiB2-NiCr coatings with agglomerated feedstocks. J Therm Spray Technol 27(4):718–726CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Materials Science and EngineeringPoznań University of TechnologyPoznańPoland

Personalised recommendations