• Michal KulkaEmail author
Part of the Engineering Materials book series (ENG.MAT.)


In this chapter, the origins of boriding process were mentioned, and the term ‘boriding’ was explained. The various important techniques of producing the boride layers and coatings were indicated together with some of their advantages. The next parts of this book were announced.


  1. Brakman CM, Gommers AWJ, Mittemeijer EJ (1989) Boriding of Fe and Fe–C, Fe–Cr, and Fe–Ni alloys boride-layer growth kinetics. J Mater Res Soc 4:1354–1370CrossRefGoogle Scholar
  2. Campos-Silva I, Flores-Jiménez M, Rodríguez-Castro G, Hernández-Sánchez E, Martínez-Trinidad J, Tadeo-Rosas R (2013) Improved fracture toughness of boride coating developed with a diffusion annealing process. Surf Coat Technol 237:429–439CrossRefGoogle Scholar
  3. Filip R, Sieniawski J, Pleszakov E (2006) Formation of surface layers on Ti–6Al–4 V titanium alloy by laser alloying. Surf Eng 22(1):53–57CrossRefGoogle Scholar
  4. Formanek B, Swadźba L, Podolski P, Supernak W and Przybyłowicz J (1994) Diffusion boriding of elements of mining bits. In: Conference proceedings: scientific-technical conference thermotreatment’94, Gliwice–Ustroń Zawodzie, pp. 227–234Google Scholar
  5. Graf von Matuschka A (1977) Borieren. Carl Hanser Verlag, Munich/ViennaGoogle Scholar
  6. Horlock AJ, McCartney DG, Shipway PH, Wood JV (2002) Thermally sprayed Ni(Cr)–TiB2 coatings using powder produced by self-propagating high temperature synthesis: microstructure and abrasive wear behaviour. Mater Sci Eng., A 336:88–98CrossRefGoogle Scholar
  7. Jin HW, Park CG, Kim MC (1999) Microstructure and amorphization induced by frictional work in Fe–Cr–B alloy thermal spray coatings. Surf Coat Technol 113:103–112CrossRefGoogle Scholar
  8. Kartal G, Kahvecioglu O, Timur S (2006) Investigating the morphology and corrosion behavior of electrochemically borided steel. Surf Coat Technol 200:3590–3593CrossRefGoogle Scholar
  9. Keddam M, Kulka M, Makuch N, Pertek A, Małdziński L (2014) A kinetic model for estimating the boron activation energies in the FeB and Fe2B layers during the gas-boriding of Armco iron: effect of boride incubation times. Appl Surf Sci 298:155–163CrossRefGoogle Scholar
  10. Keddam M, Chegroune R, Kulka M, Makuch N, Panfil D, Siwak P, Taktak S (2018) Characterization, tribological and mechanical properties of plasma paste borided AISI 316 steel. Trans Indian Inst Met 71(1):79–90CrossRefGoogle Scholar
  11. Kim H-J, Yoon B-H, Lee C-H (2001) Wear performance of the Fe-based alloy coatings produced by plasma transferred arc weld-surfacing process. Wear 249:846–852CrossRefGoogle Scholar
  12. Kulka M (2009) The gradient boride layers formed by borocarburizing and laser surface modification. Dissertation no. 428, Publishing House of Poznan University of Technology, Poznan, ISBN 978-83-7143-821-9Google Scholar
  13. Kulka M, Pertek A (2003) Microstructure and properties of borided 41Cr4 steel after laser surface modification with re-melting. Appl Surf Sci 214:278–288CrossRefGoogle Scholar
  14. Kulka M, Pertek A (2004) Microstructure and properties of borocarburized 15CrNi6 steel after laser surface modification. Appl Surf Sci 236:98–105CrossRefGoogle Scholar
  15. Kulka M, Pertek A (2007) Laser surface modification of carburized and borocarburized 15CrNi6 steel. Mater Charact 58(5):461–470CrossRefGoogle Scholar
  16. Kulka M, Pertek A (2008) Gradient formation of boride layers by borocarburizing. Appl Surf Sci 254:5281–5290CrossRefGoogle Scholar
  17. Kulka M, Pertek A, Makuch N (2011) The importance of carbon concentration–depth profile beneath iron borides for low-cycle fatigue strength. Mater Sci Eng, A 528:8641–8650CrossRefGoogle Scholar
  18. Kulka M, Makuch N, Pertek A, Piasecki A (2012) An alternative method of gas boriding applied to the formation of borocarburized layer. Mater Charact 72:59–67CrossRefGoogle Scholar
  19. Kulka M, Makuch N, Pertek A, Małdziński L (2013) Simulation of the growth kinetics of boride layers formed on Fe during gas boriding in H2-BCl3 atmosphere. J Solid State Chem 199:196–203CrossRefGoogle Scholar
  20. Kulka M, Makuch N, Dziarski P, Piasecki A, Miklaszewski A (2014) Microstructure and properties of laser-borided composite layers formed on commercially pure titanium. Opt Laser Technol 56:409–424CrossRefGoogle Scholar
  21. Kulka M, Makuch N, Dziarski P, Mikołajczak D, Przestacki D (2015) Gradient boride layers formed by diffusion carburizing and laser boriding. Opt Lasers Eng 67:163–175CrossRefGoogle Scholar
  22. Kulka M, Mikolajczak D, Makuch N, Dziarski P, Miklaszewski A (2016) Wear resistance improvement of austenitic 316L steel by laser alloying with boron. Surf Coat Technol 291:292–313CrossRefGoogle Scholar
  23. Kunst H and Schaaber O (1967) Beobachtungen beim Oberflaechenborieren von Stahl II. Haerterei-Tech Mitt 22(1), 1–25Google Scholar
  24. Kusmanov SA, Tambovskiy IV, Naumov AR, D’yakov IG, Kusmanova IA and Belkin PN (2017) Anodic electrolytic-plasma borocarburizing of low-carbon steel. Prot Met Phys Chem Surf. 53(3), 488-494CrossRefGoogle Scholar
  25. Makuch N, Kulka M, Keddam M, Taktak S, Ataibis V, Dziarski P (2017) Growth kinetics and some mechanical properties of two-phase boride layers produced on commercially pure titanium during plasma paste boriding. Thin Solid Films 626:25–37CrossRefGoogle Scholar
  26. Moissan H (1895) CR hebdom Seances Acad. Sci 120, 74Google Scholar
  27. Pertek A (2001) Kształtowanie struktury i właściwości warstw borków żelaza otrzymywanych w procesie borowania gazowego (The structure formation and the properties of boronized layers obtained in gaseous boriding process). In Polish, dissertation no. 365, Publishing House of Poznan University of Technology, Poznan, ISBN 83-7143-262-2Google Scholar
  28. Pertek A, Kulka M (2002) Characterization of complex (B + C) diffusion layers formed on chromium and nickel-based low-carbon steel. Appl Surf Sci 202:252–260CrossRefGoogle Scholar
  29. Przybyłowicz K (2000) Teoria i praktyka borowania stali (Theory and practice of steel boronizing). Publishing House of Kielce University of Technology, Kielce, In PolishGoogle Scholar
  30. Sinha AK (1991) Boriding (Boronizing). ASM Handbook 4:437–447Google Scholar
  31. Tian YS, Zhang QY, Wang DY, Chen CZ (2008) Analysis of the growth morphology of TiB and the microstructure refinement of the coatings fabricated on Ti–6Al–4 V by laser boronizing. Cryst Growth Des 8(2):700–703CrossRefGoogle Scholar
  32. Voroshnin LG, Lyakhovich LS (1978) Borirovanie stali. Metallurgiâ, MoskvaGoogle Scholar
  33. Wang B, Xue W, Wu J, Jin X, Hua M, Wu Z (2013) Characterization of surface hardened layers on Q235 low-carbon steel treated by plasma electrolytic borocarburizing. J Alloy Compd 578:162–169CrossRefGoogle Scholar
  34. Wierzchoń T (1988) The role of glow discharge in the formation of a boride layer on steel in the plasma boriding process. advances in low-temperature plasma chemistry, technology, applications, vol 2. Technomic Publishing Co.INC, Lancaster-Basel, USAGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Materials Science and EngineeringPoznań University of TechnologyPoznańPoland

Personalised recommendations