Fundamental Research on Geochemical Processes for the Development of Resilient and Sustainable Geosystems

  • Krishna R. ReddyEmail author
  • Gretchen L. Bohnhoff
  • Angelica M. Palomino
  • Marika C. Santagata
Part of the Springer Series in Geomechanics and Geoengineering book series


Fundamental understanding and control of geochemical processes in soils/rock and groundwater are vital for rational design of new and innovative resilient and sustainable geosystems. Geochemical processes such as adsorption-desorption, ion-exchange, oxidation-reduction, precipitation-dissolution, complexation, acid-base reactions, volatilization, and biodegradation processes are generally interrelated and are highly dependent on the soil/rock and pore-water characteristics such as mineralogy, oxides/carbonate content, organic carbon content, pH, solution chemistry, temperature, among others. Moreover, the geochemical processes in engineered systems can be transient and reversible, drastically impacting the performance of geosystems under different anthropogenic and natural perturbations that could occur over their design life. Non-invasive, less energy-intensive, and less resource intensive strategies and technologies are increasingly being sought for rehabilitation and/or development of sustainable geosystems. Harnessing natural biological processes has been emphasized recently toward sustainable geoengineering such as bio-cementation, bioremediation, phytoremediation, among others. However, an in-depth understanding of the fundamental dynamic geochemical processes in all such cases has been lacking, and the current research should embrace and encourage such fundamental research.


Geochemistry Resiliency Sustainability Geotechnical and geoenvironmental engineering Waste containment Bioreactor landfills Biocovers Geoenvironmental remediation Tunable materials Clay-water dispersions 



This chapter is developed based on the deliberations in the Geochemistry session at the workshop entitled “Geotechnical Fundamentals in the Face of New World Challenges” held at the National Science Foundation, Arlington, Virginia, July 17–19, 2016. The authors are grateful for the support of National Science Foundation for funding the workshop. The authors are also thankful to Ning Lu and Girish Kumar for their encouragement and assistance in preparing this chapter.


  1. 1.
    Abend, S., Lagaly, G.: Sol–gel transitions of sodium montmorillonite dispersions. Appl. Clay Sci. 16(3), 201–227 (2000)CrossRefGoogle Scholar
  2. 2.
    Amaya-Santos, G., Reddy, K.R.: Phytoremediation of heavy metals and PAHs in alkaline slag fill at wet meadow site. J. Hazard. Toxic Radioactive Waste 21(4) (2017)CrossRefGoogle Scholar
  3. 3.
    Bishop, M.D., Kim, S., Palomino, A.M., Lee, J.-S.: Deformation of “Tunable” clay-polymer composites. Appl. Clay Sci. 101, 265–271 (2014)CrossRefGoogle Scholar
  4. 4.
    Bohnhoff, G.L., Shackelford, C.D., Malusis, M., Scalia, J., Benson, C., Edil, T., Di Emidio, G., Katsumi, T., Mazzieri, F.: Novel benonites for containment barrier applications. In: Delage,P., Desrues, J., Frank, R., Puech, A., Schlosser, F. (eds.) 18th International Conference on Soil Mechanics and Geotechnical Engineering—Challenges and Innovations in Geotechnics, vol. 4, pp. 2997–3000. Presses des Ponts, Paris (2013)Google Scholar
  5. 5.
    Bohnhoff, G.L., Shackelford, C.D.: Improving membrane performance via bentonite polymer nanocomposites. Appl. Clay Sci. 86, 83–98 (2013)CrossRefGoogle Scholar
  6. 6.
    Bohnhoff, G.L., Shackelford, C.D.: Salt diffusion through a polymerized bentonite membrane. Clay and Clay Minerals 63(3), 145–162 (2015)CrossRefGoogle Scholar
  7. 7.
    Bohnhoff, G. L., Shackelford, C. D.: Hydraulic conductivity of modified clays for containment barriers. In: 7th International Congress on Environmental Geotechnics, pp. 440–447. ISSMGE, Engineers Australia (2014)Google Scholar
  8. 8.
    Cameselle, C., Chirakkara, R.A., Reddy, K.R.: Electrokinetic-enhanced phytoremediation of soils: status and Opportunities. Chemosphere 93(4), 626–636 (2013)CrossRefGoogle Scholar
  9. 9.
    Chirakkara, R.A., Cameselle, C., Reddy, K.R.: Assessing the applicability of phytoremediation of soils with mixed organic and heavy metal contaminants. Rev. Environ. Sci. Bio/Technol. 15(2), 299–326 (2016)CrossRefGoogle Scholar
  10. 10.
    Coussot, P.: Rheophysics of pastes: a review of microscopic modelling approaches. Soft Matter 3, 528–540 (2007)CrossRefGoogle Scholar
  11. 11.
    Demoz, A., Mikula, R.J.: Role of mixing energy in the flocculation of mature fine tailings. J. Environ. Eng. 138(1), 129–136 (2011)CrossRefGoogle Scholar
  12. 12.
    Di Emidio, G., Mazzieri, F., Verastegui-Flores, R.-D., Van Impe, W., Bezuijen, A.: Polymer-treated bentonite clay for chemical-resistant geosynthetic clay liners. Geosynthetics Int. 22(1), 1–13 (2015)CrossRefGoogle Scholar
  13. 13.
    Estornell, P., Daniel, D.E.: Hydraulic conductivity of 3 geosynthetic clay liners. J. Geotech. Eng. 118, 1592–1606 (1992)CrossRefGoogle Scholar
  14. 14.
    Evans, J.: Hydraulic conductivity of vertical cutoff walls. In: Daniel, D.E., Trautwein, S. (eds.) Hydraulic Conductivity and Waste Contaminant Transport in Soil, pp. 79–94. ASTM, West Conshohocken, Pennsylvania (1994)Google Scholar
  15. 15.
    Gates, W.P., Bouazza, A., Churchman, G.J.: Bentonite clay keeps pollutants at bay. Elements 5(2), 105–110 (2009)CrossRefGoogle Scholar
  16. 16.
    Halder, B.K., Palomino, A.M., Hicks, J.: Influence of Polyacrylamide Conformation on the Fabric of a “Tunable” Kaolin-Polymer Composite. (2018) (In press)CrossRefGoogle Scholar
  17. 17.
    Halder, B.K.: Meso-Scale Behavior Characterization of “Tunable” Clay-Polymer Composites, Ph.D. dissertation, University of Tennessee, Knoxville (2017)Google Scholar
  18. 18.
    Huang, P.T.: Rheological Properties and Lubrication Performance of Clay-based Drilling Fluids for Trenchless Technologies, Ph.D. thesis, Lyles School of Civil Engineering, Purdue University, West Lafayette, IN (2013)Google Scholar
  19. 19.
    Johnston. C., Sasar, M., Santagata, M., Bobet. A., Duan, L., Kaminsky, H.A.: Polymer-MFT interactions: from surface chemistry to rheology. In: Sego, D., Wilson, G.W., Beier, N.A. (eds.) Proceedings 5th International Oil Sands Tailings Conference, pp. 201–213. Lake Louise, Canada, 4– December 2016Google Scholar
  20. 20.
    Kasperski, K.L., Mikula, R.J.: Waste streams of mined oil sands: characteristics and remediation. Elements 7(6), 387–392 (2011)CrossRefGoogle Scholar
  21. 21.
    Kim, S., Moyotyka, M.A., Palomino, A.M., Podraza, N.J.: Conformational effects of adsorbed polymer on the swelling behavior of engineered clay minerals. Clays Clay Miner. 60(4), 363–373 (2012)CrossRefGoogle Scholar
  22. 22.
    Kim, S., Palomino, A.M.: Factors Influencing the Synthesis of tunable clay-polymer nanocomposites using bentonite and polyacrylamide. Appl. Clay Sci. 51, 491–498 (2011)CrossRefGoogle Scholar
  23. 23.
    Kim, S., Palomino, A.M., Colina, C.M.: Responsive polymer conformation and resulting permeability of clay-polymer nanocomposites. Mol. Simul. 38(8–9), 723–734 (2012)CrossRefGoogle Scholar
  24. 24.
    Kolstad, D., Benson, C., Edil, T.: Hydraulic conductivity and swell of nonprehydrated GCLs permeated with multi-species inorganic solutions. J. Geotech. Geoenviron. Eng. 1236–1249 (2004)Google Scholar
  25. 25.
    Lan, Y., Deng, B., Kim, C., Thornton, E.C.: Influence of soil minerals on chromium (VI) reduction by sulfide under anoxic conditions. Geochem. Trans. 8(4) (2007). Scholar
  26. 26.
    Malusis, M.A., Daniyarov, A.S.: Membrane efficiency of a Dense, Prehydrated GCL. In: 7th International Congress on Environmental Geotechnics, pp. 1166–1173. ISSMGE, Engineers Australia (2014)Google Scholar
  27. 27.
    Malusis, M., Shackelford, C.: Chemico-osmotic efficiency of a geosynthetic clay liner. J. Geotech. Geoenviron. Eng. 128, 97–106 (2002)CrossRefGoogle Scholar
  28. 28.
    Malusis, M., Shackelford, C.: Coupling effects during steady-state solute diffusion through a semipermeable clay membrane. Environ. Sci. Technol. 36, 1312–1319 (2002)CrossRefGoogle Scholar
  29. 29.
    Malusis, M., Shackelford, C., Olsen, H.: A laboratory apparatus to measure chemico-osmotic efficiency coefficients for clay soils. Geotech. Test. J. 24, 229–242 (2001)CrossRefGoogle Scholar
  30. 30.
    Manassero, M., Dominijanni, A.: Modelling the osmosis effect on solute migration through porous media. Geotechnique 53, 481–492 (2003)CrossRefGoogle Scholar
  31. 31.
    Mazzieri, F., Di Emidio, G., Van Impe, P.O.: Diffusion of calcium chloride in a modified bentonite: impact on osmotic efficiency and hydraulic conductivity. Clays Clay Miner. 58(3), 351–363 (2010)CrossRefGoogle Scholar
  32. 32.
    McDougall, J.: A hydro-bio-mechanical model for settlement and other behaviour in landfilled waste. Comput. Geotech. 34(4), 229–246 (2007)CrossRefGoogle Scholar
  33. 33.
    Mitchell, J.K., Soga, K.: Fundamentals of Soil Behavior, 3rd edn. Hoboken, NJ (2005)Google Scholar
  34. 34.
    Mongondry, P., Nicolai, T., Tassin, J.F.: Influence of pyrophosphate or polyethylene oxide on the aggregation and gelation of aqueous laponite dispersions. J. Colloid Interface Sci. 275(1), 191–196 (2004)CrossRefGoogle Scholar
  35. 35.
    Langmuir, D.: Aqueous environmental geochemistry. Ground Water 35(5), 919–920 (1997)Google Scholar
  36. 36.
    Ochoa-Cornejo, F., Bobet. A., Johnston. C., Santagata, M., Sinfield, J.: Liquefaction 50 years after Anchorage 1964—how nanoparticles could prevent it. In: 10th U.S. National Conference on Earthquake Engineering—Frontiers of Earthquake Engineering (EERI), Anchorage, 21–25 July 2014Google Scholar
  37. 37.
    Ochoa-Cornejo, F., Bobet. A., Johnston. C., Santagata, M., Sinfield, J.: Cyclic behavior and pore pressure generation in sand with laponite, a super-plastic nano-particle. Soil Dyn. Earthquake Eng. (2016) (In press)Google Scholar
  38. 38.
    Images of Clay: Platy Illite from the Rotliegend of Northern Germany. A joint initiative of the Clay Minerals Society and The Clay Minerals Group. Accessed July 16 2009
  39. 39.
    Reddy, K.R.: Technical challenges to in-situ remediation of polluted sites. Geotech. Geol. Eng. J. 28(3), 211–221 (2010)CrossRefGoogle Scholar
  40. 40.
    Reddy, K.R., Amaya-Santos, G.: Effects of variable site conditions on phytoremediation of mixed contaminants: field-scale investigation at Big Marsh site. J. Environ. Eng. 143(9), 04017057 (2017)CrossRefGoogle Scholar
  41. 41.
    Reddy, K.R., Chirakkara, R.A.: Green and sustainable remedial strategy for contaminated site: case study. Geotech. Geol. Eng. J. 31(6), 1653–1661 (2013)CrossRefGoogle Scholar
  42. 42.
    Reddy, K.R., Kumar, G., Giri, R.K.: Modeling coupled processes in municipal solid waste landfills: an overview with key engineering challenges. Int. J. Geosynthetics Ground Eng. 3(1), 6 (2017a)CrossRefGoogle Scholar
  43. 43.
    Reddy, K.R., Kumar, G., Giri, R.K.: Influence of dynamic coupled hydro-bio-mechanical processes on response of municipal solid waste and liner system in bioreactor landfills. Waste Manag. 63, 143–160 (2017b)CrossRefGoogle Scholar
  44. 44.
    Reddy, K.R., Kumar, G., Giri, R.K.: System effects on bioreactor landfill performance based on coupled hydro-bio-mechanical modeling. J. Hazard. Toxic Radioact. Waste 22(1), 04017024 (2017c)CrossRefGoogle Scholar
  45. 45.
    Reddy, K.R., Kumar, G., Giri, R.K., Basha, B.M.: Reliability assessment of bioreactor landfills using Monte Carlo simulation and coupled hydro-bio-mechanical model. Waste Manag. 72, 329–338 (2018)CrossRefGoogle Scholar
  46. 46.
    Reddy, K.R., Amaya-Santos, G., Yargicoglu, E., Cooper, D.E., Negri, M.C.: Phytoremediation of PAHs and heavy metals at slag disposal site: three-year field investigation. Int. J. Geotech. Eng. 1–16 (2017d)Google Scholar
  47. 47.
    Reddy, K.R., Amaya-Santos, G., Copper, D.: Field-scale phytoremediation of mixed contaminants in upland area at Big Marsh site, Chicago, USA. Ind. Geotech. J. 1–16 (2017e)Google Scholar
  48. 48.
    Sample-Lord, K.: Membrane Behavior and Diffusion in Unsaturated Sodium Bentonite. Ph.D. Dissertation, Colorado State University, Fort Collins, CO (2015)Google Scholar
  49. 49.
    Sample-Lord, K., Shackelford, C.: Dialysis method to control exchangeable cations and remove excess salts from bentonite. Geotech. Test. J. 39(2), 1–11 (2016). Scholar
  50. 50.
    Santagata, M., Clarke, J.P., Bobet, A., Drnevich, V.P., El Mohtar, C.S., Huang, P.T., Johnston, C.T.: Rheology of concentrated bentonite dispersions treated with sodium pyrophosphate for application in mitigating earthquake-induced liquefaction. Appl. Clay Sci. 99, 24–34 (2014)CrossRefGoogle Scholar
  51. 51.
    Scalia, J.: Bentonite-polymer composites for containment applications, Ph.D. dissertation, University of Wisconsin, Madison, Madison, WI, USA (2012)Google Scholar
  52. 52.
    Scalia, J., Benson, C.H.: Effect of permeant water on the hydraulic conductivity of exhumed geosynthetic clay liners. Geotech. Test. J. 33(1), 1–11 (2010)Google Scholar
  53. 53.
    Scalia, J., Benson, C.H., Bohnhoff, G.L., Edil, T.B., Shackelford, C.D.: Long-term hydraulic conductivity of a bentonite polymer nanocomposites permeated with aggressive inorganic solutions. J. Geotech. Geoenviron. Eng. 140(3), 04013025 (2014)CrossRefGoogle Scholar
  54. 54.
    Shackelford, C.D.: The ISSMGE Kerry Rowe Lecture: The role of diffusion in environmental geotechnics. Can. Geotech. J. 51(11), 1219–1242 (2014)CrossRefGoogle Scholar
  55. 55.
    Shackelford, C.: Membrane behavior in engineered bentonite-based containment barriers: State of the art. In: Manassero, M., Dominijanni, A., Foti, S., Musso, G. (eds.) Coupled Phenomena in Environmental Geotechnics, pp. 45–60. CRC Press/Balkema, Taylor & Francis Group, London (2013)Google Scholar
  56. 56.
    Sharma, H.D., Reddy, K.R.: Geoenvironmental engineering: site remediation, waste containment, emerging waste management technologies. Wiley, Hoboken, New Jersey (2004)Google Scholar
  57. 57.
    Sposito, G.: The Chemistry of Soils. Oxford University Press, New York (1989)Google Scholar
  58. 58.
    Tanaka, H., Meunier, J., Bonn, D.: Nonergodic states of charged colloidal suspensions: repulsive and attractive glasses and gels. Phys. Rev. 69(3), 03140 (2004)Google Scholar
  59. 59.
    Wang, X.T., Feng, X., Xu, Z., Masliyah, J.H.: Polymer aids for settling and filtration of oil sands tailings. Can. J. Chem. Eng. 88(3), 403–410 (2010)Google Scholar
  60. 60.
    Yargicoglu, E., Sadasivam, B.Y., Reddy, K.R., Spokas, K.: Physical and chemical characterization of waste wood derived biochars. Waste Manag. 36(2), 256–268 (2015)CrossRefGoogle Scholar
  61. 61.
    Yargicoglu, E.Y., Reddy, K.R.: Microbial abundance and activity in biochar-amended landfill cover soils: Evidences from large-scale column and field experiments. J. Environ. Eng. 143(9), 04017058 (2017)CrossRefGoogle Scholar
  62. 62.
    Yargicoglu, E.Y., Reddy, K.R.: Effects of biochar and wood pellets amendments added to landfill cover soil on microbial methane oxidation: A laboratory column study. J. Environ. Manage. 193, 19–31 (2017)CrossRefGoogle Scholar
  63. 63.
    Yargicoglu, E.Y., Reddy, K.R.: Biochar-amended soil cover for microbial methane oxidation: Effect of biochar amendment ratio and cover profile. J. Geotech. Geoenviron. Eng., ASCE 144(3), 04017123 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Krishna R. Reddy
    • 1
    Email author
  • Gretchen L. Bohnhoff
    • 2
  • Angelica M. Palomino
    • 3
  • Marika C. Santagata
    • 4
  1. 1.Department of Civil & Materials EngineeringUniversity of Illinois at ChicagoChicagoUSA
  2. 2.Department of Civil & Environmental EngineeringUniversity of Wisconsin-PlattevillePlattevilleUSA
  3. 3.Department of Civil & Environmental EngineeringUniversity of TennesseeKnoxvilleUSA
  4. 4.Lyles School of Civil EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations