Advertisement

Technical Update in Conventional and Arthrographic MRI of the Shoulder

  • Seema MerajEmail author
  • Jenny T. Bencardino
Chapter

Abstract

MR is the imaging modality of choice for the evaluation of the shoulder, offering superior soft-tissue contrast while acquiring images in multiple planes. Various factors affect shoulder MR including the strength of the magnetic field, position of the patient, selection of imaging planes, and use of contrast. In this chapter, the technique and protocol for conventional noncontrast MRI as well as direct/indirect arthrography, MR appearance of normal and variant anatomy, evaluation of the postoperative shoulder, and advanced techniques including 3D and biochemical imaging are described.

Keywords

Shoulder MRI Glenohumeral joint Technique Shoulder arthrography Direct arthrogram Indirect arthrogram Postoperative shoulder 3D imaging Biochemical imaging 

References

  1. 1.
    Davis SJ, Teresi LM, Bradley WG, et al. Effect of arm rotation on MR imaging of the rotator cuff. Radiology. 1991;181:265–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Magee T, Shapiro M, Williams D. Comparison of high-field-strength versus low-field-strength MRI of the shoulder. AJR Am J Roentgenol. 2003;181:1211–5.PubMedCrossRefGoogle Scholar
  3. 3.
    Shellock FG, Bert JM, Fritts HM, Gundry CR, et al. Evaluation of the rotator cuff and glenoid labrum using a 0.2-Tesla extremity magnetic resonance (MR) system: MR results compared to surgical findings. J Magn Reson Imaging. 2001;14:763–70.PubMedCrossRefGoogle Scholar
  4. 4.
    Spencer BA, Dolinskas CA, Seymour PA, Thomas SJ, Abboud JA. Glenohumeral articular cartilage lesions: prospective comparison of non-contrast magnetic resonance imaging and findings at arthroscopy. Arthroscopy. 2013;29:1466–70.PubMedCrossRefGoogle Scholar
  5. 5.
    VanBeek C, Loeffler BJ, Narzikul A, et al. Diagnostic accuracy of noncontrast MRI for detection of glenohumeral cartilage lesions: a prospective comparison to arthroscopy. J Shoulder Elb Surg. 2014;23(7):1010–6.CrossRefGoogle Scholar
  6. 6.
    Legan JM, Burkhard TK, Goff WB II, et al. Tears of the glenoid labrum: MR imaging of 88 arthroscopically confirmed cases. Radiology. 1991;179:241–6.PubMedCrossRefGoogle Scholar
  7. 7.
    Phillips JC, Cook C, Beaty S, et al. Validity of noncontrast magnetic resonance imaging in diagnosing superior labrum anterior-posterior tears. J Shoulder Elb Surg. 2013;22(1):3–8.CrossRefGoogle Scholar
  8. 8.
    Magee TH, Williams D. Sensitivity and specificity in detection of labral tears with 3.0-T MRI of the shoulder. AJR. 2006;187:1448–52.PubMedCrossRefGoogle Scholar
  9. 9.
    Kwak SM, Brown RR, Resnick D, et al. Anatomy, anatomic variations, and pathology of 11- to 3-o’clock position of the glenoid labrum: findings on MR arthrography and anatomic sections. AJR. 1998;171:235–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Cvitanic O, Tirman P, Feller J, et al. Using abduction and external rotation of the shoulder to increase the sensitivity of MR arthrography in revealing tears of the anterior glenoid labrum. AJR. 1997;169:837–44.PubMedCrossRefGoogle Scholar
  11. 11.
    Song JC, Lazarus ML, Song AP. MRI findings in Little Leaguer’s shoulder. Skelet Radiol. 2006;35(2):107–9.CrossRefGoogle Scholar
  12. 12.
    MM C, Harish S, Burr J. MR arthrographic assessment of suspected posteroinferior labral lesions using flexion, adduction, and internal rotation positioning of the arm: preliminary experience. Skelet Radiol. 2010;39(5):481–8.CrossRefGoogle Scholar
  13. 13.
    G W, Haglund-Akerlind Y, Larsson H. Open MR imaging of the unstable shoulder in the apprehension test position: description and evaluation of an alternative MR examination position. Eur Radiol. 1999;9(9):1789–95.CrossRefGoogle Scholar
  14. 14.
    Chan KK, Muldoon KA, Yeh L, et al. Superior labral anteroposterior lesions: MR arthrography with arm traction. AJR. 1999;173(4):111–1122.CrossRefGoogle Scholar
  15. 15.
    Friedman RJ, Bonutti PM, Genez B. Cine magnetic resonance imaging of the subcoracoid region. Orthopedics. 1998;21:545–8.PubMedGoogle Scholar
  16. 16.
    Siegel MJ. MRI of bone marrow [PDF download]. American Roentgen Ray Society; 2005. http://www.arrs.org/shopARRS/products/pdf.cfm?theFile=s06p_sample.pdf.
  17. 17.
    Mirowitz SA. Hematopoietic bone marrow within the proximal humeral epiphysis in normal adults: investigation with MR imaging. Radiology. 1993;188:689–93.PubMedCrossRefGoogle Scholar
  18. 18.
    Clark JM, Harryman DT. II: Tendons, ligaments, and capsule of the rotator cuff. Gross and microscopic anatomy. J Bone Joint Surg. 1992;74-A:713–25.CrossRefGoogle Scholar
  19. 19.
    Erickson SJ, Cox IH, Hyde JS. Effect of tendon orientation on MR imaging signal intensity: a manifestation of the “magic angle” phenomenon. Radiology. 1991;181(2):389–92.PubMedCrossRefGoogle Scholar
  20. 20.
    GuinelFilho H, Du J, Pak BC, et al. Quantitative characterization of the Achilles tendon in cadaveric specimens: T1 and T2* measurements using ultrashort-TE MRI at 3 T. Am J Roentgenol. 2009;192(3):W117–24.CrossRefGoogle Scholar
  21. 21.
    Du J, Chiang AJ, Chung CB, Statum S, Znamirowski R, Takahashi A, et al. Orientational analysis of the Achilles tendon and enthesis using an ultrashort echo time spectroscopic imaging sequence. Magn Reson Imaging. 2010;28:178–84.PubMedCrossRefGoogle Scholar
  22. 22.
    Hodgson RJ, O’Connor PJ, Grainger AJ. Tendon and ligament imaging. Br J Radiol. 2012;85(1016):1157–72.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Buck F, Grehn H. Degeneration of the long biceps tendon: comparison of MRI with gross anatomy and histology. Am J Roentgenol. 2009;193(5):1367–75.CrossRefGoogle Scholar
  24. 24.
    Fullerton GD, Rahal A. Collagen structure: the molecular source of the tendon magic angle effect. J Magn Reson Imaging. 2007;25:345–61.PubMedCrossRefGoogle Scholar
  25. 25.
    Hayes CW, Parellada JA. The magic angle effect in musculoskeletal MR imaging. Top Magn Reson Imaging. 1996;8:51–6.PubMedGoogle Scholar
  26. 26.
    Peto S, Gillis P, Henri VP. Structure and dynamics of water in tendon from NMR relaxation measurements. Biophys J. 1990;57(1):71–84.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Al-Riyami AM, Lim BK, Peh WC. Variants and pitfalls in MR imaging of shoulder injuries. Semin Musculoskelet Radiol. 2014;18:36–44.PubMedCrossRefGoogle Scholar
  28. 28.
    Peh WCG, Chan JHM. The magic angle phenomenon in tendons: effect of varying the MR echo time. Br J Radiol. 1998;71:31–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Weinreb JH, Sheth C, Aposolakos J, et al. Tendon structure, disease, and imaging. Muscles Ligaments Tendons J. 2014;4(1):66–73.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Vahlensieck M, Pollack M, Lang P, et al. Two segments of the supraspinous muscle: cause of high signal intensity at MR imaging? Radiology. 1993;186(2):449–54.PubMedCrossRefGoogle Scholar
  31. 31.
    Resnick D, Kang HS, Pretterklieber ML. Shoulder. In: Resnick D, Kang HS, Pretterklieber ML, editors. Internal derangements of joints. 2nd ed. Philadelphia, Pennsylvania: Elsevier; 2007. p. 713–1122.Google Scholar
  32. 32.
    Guckel C, Nidecker A. Diagnosis of tears in rotator-cuff injuries. Eur J Radiol. 1997;25(3):168–76.PubMedCrossRefGoogle Scholar
  33. 33.
    Kim HM, Dahiya N, Teefey SA, et al. Location and initiation of degenerative rotator cuff tears: an analysis of three hundred and sixty shoulders. J Bone Joint Surg Am. 2010;92(5):1088–96.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Chansky HA, Iannotti JP. The vascularity of the rotator cuff. Clin Sports Med. 1991;10(4):807–22.PubMedGoogle Scholar
  35. 35.
    Matava MJ, Purcell DB, Rudzki JR. Partial-thickness rotator cuff tears. Am J Sports Med. 2005;33(9):1405–17.PubMedCrossRefGoogle Scholar
  36. 36.
    Fukuda H, Hamada K, Nakajima T, Yamada N, Tomonaga A, Goto M. Partial-thickness tears of the rotator cuff: a clinicopathological review based on 66 surgically verified cases. Int Orthop. 1996;20:257–265.30.PubMedCrossRefGoogle Scholar
  37. 37.
    Fukuda H, Hamada K, Yamanaka K. Pathology and pathogenesis of bursal-side rotator cuff tears viewed from en bloc histologic sections. Clin Orthop Relat Res. 1990;254:75–80.31.Google Scholar
  38. 38.
    Fukuda H, Mikasa M, Ogawa K, et al. The partial thickness tear of the rotator cuff. Orthop Trans. 1983;173:70–7.Google Scholar
  39. 39.
    Reilly P, Amis AA, Wallace AL, Emery RJ. Supraspinatus tears: propagation and strain alteration. J Shoulder Elb Surg. 2003;12:134–8.CrossRefGoogle Scholar
  40. 40.
    Neer CS II. Anterior acromioplasty for the chronic impingement syndrome in the shoulder: a preliminary report. J Bone Joint Surg Am. 1972;67:41–50.CrossRefGoogle Scholar
  41. 41.
    Ozaki J, Fujimoto S, Nakagawa Y, Masuhara K, Tamai S. Tears of the rotator cuff of the shoulder associated with pathological changes in the acromion: a study in cadavers. J Bone Joint Surg Am. 1988;70:1224–30.PubMedCrossRefGoogle Scholar
  42. 42.
    Kolts I, Busch LC, Tomusk H, et al. Anatomical composition of the anterior shoulder joint capsule. A cadaver study on 12 glenohumeral joints. Ann Anat. 2001;183(1):53–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Park YH, Lee JY, Moon SH, Mo JH, Yang BK, Hahn SH, Resnick D. MR arthrography of the labral capsular ligamentous complex in the shoulder: imaging variations and pitfalls. AJR. 2000;175:667–72.PubMedCrossRefGoogle Scholar
  44. 44.
    Snyder SJ, Karzel RP, Del Pizzo W, et al. SLAP lesions of the shoulder. Arthroscopy. 1990;6:274–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Maffet MW, Gartsman GM, Moseley B. Superior labrum-biceps tendon complex lesions of the shoulder. Am J Sports Med. 1995;23:93–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Patten RM. Vacuum phenomenon: a potential pitfall in the interpretation of gradient-recalled-echo MR images of the shoulder. AJR. 1994;162(6):1383–6.PubMedCrossRefGoogle Scholar
  47. 47.
    Stallenberg B, Madani A, Burny F, et al. The vacuum phenomenon: a CT sign of nonunited fracture. AJR. 2001;176(5):1161–4.PubMedCrossRefGoogle Scholar
  48. 48.
    Dwyer AJ, Knop RH, Hoult DI. Frequency shift artifacts in MR imaging. J Comput Assist Tomogr. 1985;9:16–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Rosen BR, Wedeen VJ, Brady TJ. Selective saturation NMR imaging. J Comput Assist Tomogr. 1984;8:813–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Guntern DV, Pfirmann CWA, Schmid MR, et al. Articular cartilage lesions of the glenohumeral joint: diagnostic effectiveness of MR arthrography and prevalence in patients with subacromial impingement syndrome. Radiology. 2003;226:165–70.PubMedCrossRefGoogle Scholar
  51. 51.
    Frahm J, Haase A, Hanicke W, et al. Chemical shift selective MR imaging using whole body magnet. Radiology. 1985;156:441–4.PubMedCrossRefGoogle Scholar
  52. 52.
    Haase A, frahm J, Hanicke W, et al. 1H NMR chemical shift selective (CHESS) imaging. Phys Med Biol. 1985;30:341–4.PubMedCrossRefGoogle Scholar
  53. 53.
    Osinski, et al. Magnetic resonance arthrography. Orthop Clin N Am. 2006;37:299–319.CrossRefGoogle Scholar
  54. 54.
    Steinbach LS, Palmer WE, Schweitzer ME. Special focus session: MR arthrography. Radiographics. 2002;22:1223–46.PubMedCrossRefGoogle Scholar
  55. 55.
    Chandnani VP, Yeager TD, DeBerardino T, Christensen K, Gagliardi JA, et al. Glenoid labral tears: prospective evaluation with MR imaging, MR arthrography, and CT arthrography. AJR. 1993;161:1229–35.PubMedCrossRefGoogle Scholar
  56. 56.
    Beltran J, Bencardino J, Mellado J, Rosenberg ZS, Irish RD. MR arthrography of the shoulder: variants and pitfalls. Radiographics. 1997;17(6):1403–12.PubMedCrossRefGoogle Scholar
  57. 57.
    Shankman S, Bencardino J, Beltran J. Glenohumeral instability: evaluation using MR arthrography of the shoulder. Skelet Radiol. 1999;28:365–82.CrossRefGoogle Scholar
  58. 58.
    Palmer WE, Brown JH, Rosenthal DJ. Labral ligamentous complex of the shoulder: evaluation with MR arthrography. Radiology. 1994;190:645–51.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Sethi PM, Kingston S, El Attrache N. Accuracy of anterior intra-articular injection of the glenohumeral joint. Arthroscopy. 2005;21:77–80.PubMedCrossRefGoogle Scholar
  60. 60.
    Catalano OA, Manfredi R, Vanzulli A, et al. MR arthrography of the glenohumeral joint: modified posterior approach without imaging guidance. Radiology. 2007 Feb;242(2):550–4.PubMedCrossRefGoogle Scholar
  61. 61.
    Porat S, Leupold JA, Burnett KR, Nottage WM. Reliability of non-imaging-guided glenohumeral joint injection through rotator interval approach in patients undergoing diagnostic MR arthrography. AJR. 2008;191(3):W96–9.PubMedCrossRefGoogle Scholar
  62. 62.
    Zwar RB, Read JW, Noakes JB. Sonographically guided glenohumeral joint injection. AJR. 2004;183:48–50.PubMedCrossRefGoogle Scholar
  63. 63.
    Mulligan ME. CT-guided shoulder arthrography at the rotator cuff interval. AJR. 2008;191:58–61.CrossRefGoogle Scholar
  64. 64.
    Kopka L, Funke M, Fischer U, et al. MR arthrography of the shoulder with gadopentetate dimeglumine: influence of concentration, iodinated contrast material, and time on signal intensity. AJR. 1994;163(3):621–3.PubMedCrossRefGoogle Scholar
  65. 65.
    Engel A. Magnetic resonance knee arthrography. Enhanced contrast by gadolinium complex in the rabbit and in humans. Acta Orthop Scand Suppl. 1990;240:1–57.PubMedGoogle Scholar
  66. 66.
    La Rocca Vieira R, Rybak LD, Recht M. Technical update on magnetic resonance imaging of the shoulder. Magn Reson Imaging Clin N Am. 2012;20:149–61.PubMedCrossRefGoogle Scholar
  67. 67.
    Masi JN, Newitt D, Sell CA, Daldrup-Link H, Steinbach L, Majumdar S, et al. Optimization of gadodiamide concentration for MR arthrography at 3 T. AJR. 2005;184:1754–61.PubMedCrossRefGoogle Scholar
  68. 68.
    Montgomery DD, Morrison WB, Schweitzer ME, Weishaupt D, Dougherty L. Effects of iodinated contrast and field strength on gadolinium enhancement: implications for direct MR arthrography. J Magn Reson Imaging. 2002;15:334–43.PubMedCrossRefGoogle Scholar
  69. 69.
    Jacobson JA, Lin J, Jamadar DA, Hayes CW. Aids to successful shoulder arthrography performed with a fluoroscopically guided anterior approach. Radiographics. 2003;23:373–8.CrossRefGoogle Scholar
  70. 70.
    Brown RR, Clarke DW, Daffner RH. Is a mixture of gadolinium and iodinated contrast material safe during MR arthrography? AJR. 2000;175:1087–90.PubMedCrossRefGoogle Scholar
  71. 71.
    Sanders TG, Tirman PF, Linares R, Feller JF, Richardson R. The glenolabral articular disruption lesion: MR arthrography with arthroscopic correlation. AJR. 1999;172:171–5.PubMedCrossRefGoogle Scholar
  72. 72.
    Masi JN, Newitt D, Sell CA, et al. Optimization of gadodiamide concentration for MR arthrography at 3 T. AJR. 2005;184:1754–61.PubMedCrossRefGoogle Scholar
  73. 73.
    Lee MJ, Motamedi K, Chow K, et al. Gradient-recalled echo sequences in direct shoulder MR arthrography for evaluating the labrum. Skelet Radiol. 2008;37(1):19–2.CrossRefGoogle Scholar
  74. 74.
    Schreinemachers SA, van der Hulst VP, Willems WJ, Bipat S, van der Woude HJ. Detection of partial-thickness supraspinatus tendon tears: is a single direct MR arthrography series in ABER position as accurate as conventional MR arthrography? Skelet Radiol. 2009;38:967–75.CrossRefGoogle Scholar
  75. 75.
    Hodler J, Loredo RA, Longo C, Trudell D, Yu JS, Resnick D. Assessment of articular cartilage thickness of the humeral head: MR–anatomic correlation in cadavers. AJR. 1995;165:615–20.PubMedCrossRefGoogle Scholar
  76. 76.
    Pfirrmann CW, Zanetti M, Weishaupt D, Gerber C, Hodler J. Subscapularis tendon tears: detection and grading at MR arthrography. Radiology. 1999;213:709–14.PubMedCrossRefGoogle Scholar
  77. 77.
    Waldt S, Burkart A, Imhoff AB, et al. Anterior shoulder instability: accuracy of MR arthrography in the classification of anteroinferior labroligamentous injuries. Radiology. 2005;237:578–83.PubMedCrossRefGoogle Scholar
  78. 78.
    Waldt S, Burkart A, Lange P, Imhoff P, Rummeny EJ, Woertler K. Diagnostic performance of MR arthrography in the assessment of superior labral anteroposterior lesions of the shoulder. AJR. 2004;182:1271–8.PubMedCrossRefGoogle Scholar
  79. 79.
    Giaconi JC, Link TM, Vail TP, et al. Morbidity of direct MR arthrography. AJR. 2011;196:868–74.PubMedCrossRefGoogle Scholar
  80. 80.
    Newberg AH, Munn CS, Robbins AH. Complications of arthrography. Radiology. 1985;155:605–6.PubMedCrossRefGoogle Scholar
  81. 81.
    Hugo PC 3rd, Newberg AH, Newman JS, Wetzner SM. Complications of arthrography. Semin Musculoskelet Radiol. 1998;2:345–8.PubMedCrossRefGoogle Scholar
  82. 82.
    Vahlensieck M, Sommer T, Textor J, et al. Indirect MR arthrography: technique and applications. Eur Radiol. 1998;8:232–5.PubMedCrossRefGoogle Scholar
  83. 83.
    Vahlensieck M, Lang P, Sommer T, Genant HK, Schild HH. Indirect MR arthrography: techniques and applications. Semin Ultrasound CT MR. 1997;18:302–6.PubMedCrossRefGoogle Scholar
  84. 84.
    Vahlensieck M, Peterfy CG, Wischer T, et al. Indirect MR arthrography: optimization and clinical applications. Radiology. 1996;200(1):249–54.PubMedCrossRefGoogle Scholar
  85. 85.
    Drape JL, Thelen P, Gay-Depassier P, Silbermann O, Benacerraf R. Intra-articular diffusion of Gd-DOTA after intravenous injection in the knee: MR imaging evaluation. Radiology. 1993;188:227–34.PubMedCrossRefGoogle Scholar
  86. 86.
    Winalski CS, Aliabadi P, Wright RJ, Shortkroff S, Sledge CB, Weissman BN. Enhancement of joint fluid with intravenously administered gadopentetate dimeglumine: technique, rationale, and implications. Radiology. 1993;187:179–85.PubMedCrossRefGoogle Scholar
  87. 87.
    Allmann KH, Schaefer O, Hauer M, et al. Indirect MR arthrography of the unexercised glenohumeral joint in patients with rotator cuff tears. Investig Radiol. 1999;34(6):435–40.CrossRefGoogle Scholar
  88. 88.
    Zoga AC, Schweitzer ME. Indirect magnetic resonance arthrography: applications in sports imaging. Top Magn Reson Imaging. 2003;14:25–33.PubMedCrossRefGoogle Scholar
  89. 89.
    Kaura DR, Scweitzer ME, Weishaupt D, et al. Optimization of indirect arthrography of the knee by application of external heat: initial experience. J Magn Reson Imaging. 2005;22(6):810–2.PubMedCrossRefGoogle Scholar
  90. 90.
    Weishaupt D, Schweitzer ME, Rawool NM, et al. Indirect MR arthrography of the knee: effects of low-intensity ultrasound on the diffusion rate of intravenously administered Gd-DTPA in healthy volunteers. Investig Radiol. 2001;36(8):493–9.CrossRefGoogle Scholar
  91. 91.
    Yagci B, Manisali M, Yilmaz E, et al. Indirect MR arthrography of the shoulder in detection of rotator cuff ruptures. Eur Radiol. 2001;11:258–62.PubMedCrossRefGoogle Scholar
  92. 92.
    Herold T, Bachthaler M, Hamer OW, Hente R, Feuerbach S, Fellner C, et al. Indirect MR arthrography of the shoulder: use of abduction and external rotation to detect full- and partial-thickness tears of the supraspinatus tendon. Radiology. 2006;240:152–60.PubMedCrossRefGoogle Scholar
  93. 93.
    Van Dyck P, Gielen JL, Veryser J, et al. Tears of the supraspinatus tendon: assessment with indirect magnetic resonance arthrography in 67 patients with arthroscopic correlation. Acta Radiol. 2009;50(9):1057–63.PubMedCrossRefGoogle Scholar
  94. 94.
    Jung JY, Yoon YC, Yi SK, Yoo J, Choe BK. Comparison study of indirect MR arthrography and direct MR arthrography of the shoulder. Skelet Radiol. 2009;38:659–67.CrossRefGoogle Scholar
  95. 95.
    Oh DK, Yoon YC, Kwon JW, Choi S-H, Jung JY, Bae S, et al. Comparison of indirect isotropic MR arthrography and conventional MR arthrography of labral lesions and rotator cuff tears: a prospective study. AJR. 2009;192:473–9.PubMedCrossRefGoogle Scholar
  96. 96.
    Choo HJ, Lee SJ, Kim JH, et al. Delaminated tears of the rotator cuff: prevalence, characteristics, and diagnostic accuracy using indirect MR arthrography. AJR. 2015;204:360–6.PubMedCrossRefGoogle Scholar
  97. 97.
    Fallahi F, Green N, Gadde S, et al. Indirect magnetic resonance arthrography of the shoulder; a reliable diagnostic tool for investigation of suspected labral pathology. Skelet Radiol. 2013;42(9):1225–33.CrossRefGoogle Scholar
  98. 98.
    Song KD, Kwon JW, Yoon YC, et al. Indirect MR arthrographic findings of adhesive capsulitis. AJR. 2011;197(6):W1105–9.PubMedCrossRefGoogle Scholar
  99. 99.
    Murphy KP, Szopinski KT, Cohan RH, Mermillod B, Ellis JH. Occurrence of adverse reactions to gadolinium-based contrast material and management of patients at increased risk: a survey of the American Society of Neuroradiology Fellowship Directors. Acad Radiol. 1999;6:656–64.PubMedCrossRefGoogle Scholar
  100. 100.
    Magee T. Can isotropic fast gradient echo imaging be substituted for conventional T1 weighted sequences in shoulder MR arthrography at 3 Tesla? J Magn Reson Imaging. 2007;26:118–22.PubMedCrossRefGoogle Scholar
  101. 101.
    Lee MJ, Motamedi K, Chow K, Seeger LL. Gradient-recalled echo sequences in direct shoulder MR arthrography for evaluating the labrum. Skelet Radiol. 2008;37:19–25.CrossRefGoogle Scholar
  102. 102.
    Jung JY, Yoon YC, Choi SH. Three-dimensional isotropic shoulder MR arthrography: comparison with two-dimensional MR arthrography for the diagnosis of labral lesions at 3.0 T. Radiology. 2009;250(2):498–50.PubMedCrossRefGoogle Scholar
  103. 103.
    Gyftopoulos S, Yemin A, Mulholland T, et al. 3D MR osseous reconstructions of the shoulder using a gradient-echo based two-point Dixon reconstruction: a feasibility study. Skelet Radiol. 2013;42:347–52.CrossRefGoogle Scholar
  104. 104.
    Gyftopoulos S, Beltran LS, Yemin A, et al. Use of 3D MR reconstructions in the evaluation of glenoid bone loss: a clinical study. Skelet Radiol. 2014;43:213–8.CrossRefGoogle Scholar
  105. 105.
    Zanetti M, Jost B, Hodler J, Gerber C. MR imaging after rotator cuff repair: full-thickness defects and bursitis-like subacromial abnormalities in asymptomatic subjects. Skelet Radiol. 2000;29(6):314–9.CrossRefGoogle Scholar
  106. 106.
    Wolfgang GL. Surgical repair of tears of the rotator cuff of the shoulder. Factors influencing the result. J Bone Joint Surg Am. 1974;56(1):14–26.PubMedCrossRefGoogle Scholar
  107. 107.
    Knudsen HB, Gelineck J, Sojbjerg JO, Olsen BS, Johannsen HV, Sneppen O. Functional and magnetic resonance imaging evaluation after single-tendon rotator cuff reconstruction. J Shoulder Elb Surg. 1999;8:242–6.CrossRefGoogle Scholar
  108. 108.
    Harryman DT, Mack LA, Wang KY, Jackins SE, Richardson ML, Matsen FA III. Repairs of the rotator cuff. Correlation of functional results with integrity of the cuff. J Bone Joint Surg Am. 1991;73:982–9.PubMedCrossRefGoogle Scholar
  109. 109.
    Gazielly DF, Gleyze P, Montagnon C. Functional and anatomical results after rotator cuff repair. Clin Orthop Relat Res. 1994;304:43–53.Google Scholar
  110. 110.
    Galatz LM, Ball CM, Teefey SA, Middleton WD, Yamaguchi K. The outcome and repair integrity of completely arthroscopically repaired large and massive rotator cuff tears. J Bone Joint Surg Am. 2004;86-A:219–24.CrossRefGoogle Scholar
  111. 111.
    Gerber C, Fuchs B, Hodler J. The results of repair of massive tears of the rotator cuff. J Bone Joint Surg Am. 2000;82:505–15.PubMedCrossRefGoogle Scholar
  112. 112.
    Bohsali KI, Wirth MA, Rockwood CA Jr. Complications of total shoulder arthroplasty. J Bone Joint Surg Am. 2006;88:2279–92.PubMedGoogle Scholar
  113. 113.
    Merolla G, Di Pietto F, Romano S, et al. Radiographic analysis of shoulder anatomical arthroplasty. Eur J Radiol. 2008;68:159–69.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Ha AS, Petscavage JM, Chew FS. Current concepts of shoulder arthroplasty for radiologists: part 2—anatomic and reverse total shoulder replacement and nonprosthetic resurfacing. AJR. 2012;199:768–76.PubMedCrossRefGoogle Scholar
  115. 115.
    Ives EP, Nazarian LN, Parker L, et al. Subscapularis tendon tears: a common sonographic finding in symptomatic postarthroplasty shoulders. J Clin Ultrasound. 2013;41(3):129–33.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Hennigan SP, Iannotti JP. Instability after prosthetic arthroplasty of the shoulder. Orthop Clin North Am. 2001;52:649–59.CrossRefGoogle Scholar
  117. 117.
    Neer CS 2nd, Watson KC, Stanton FJ. Recent experience in total shoulder replacement. J Bone Joint Surg. 1982;64(3):319–37.PubMedCrossRefGoogle Scholar
  118. 118.
    Magee T, Shapiro M, Hewell G, et al. Complications of rotator cuff surgery in which bioabsorbable anchors are used. AJR. 2003;181:1227–31.PubMedCrossRefGoogle Scholar
  119. 119.
    Nusselt T, Freche S, Klinger HM, et al. Intraosseous foreign body granuloma in rotator cuff repair with bioabsorbable suture anchor. Arch OrthopTrauma Surg. 2010;130(8):1037–40.Google Scholar
  120. 120.
    Beltran LS, Bencardino JT, Steinbach LS. Postoperative MRI of the shoulder. J Magn Reson Imaging. 2014;40:1280–97.PubMedCrossRefGoogle Scholar
  121. 121.
    Lee M, Kim S, Lee S, et al. Overcoming artifacts from metallic orthopedic implants at high field-strength MR imaging and multidetector CT. Radiographics. 2007;27:791–803.PubMedCrossRefGoogle Scholar
  122. 122.
    Sperling JW, Potter HG, Craig EV, Flatow E, Warren RF. Magnetic resonance imaging of painful shoulder arthroplasty. J Shoulder Elb Surg. 2002;11:315–21.CrossRefGoogle Scholar
  123. 123.
    Eustace S, Goldberg R, Williamson D, et al. MR imaging of soft tissues adjacent to orthopaedic hardware: techniques to minimize susceptibility artifact. Clin Radiol. 1997;52:589–94.PubMedCrossRefGoogle Scholar
  124. 124.
    Mohana-Borges AVR, Chung CB, Resnick D. MR imaging and MR arthrography of the postoperative shoulder. Radiographics. 2004;24:69–85.PubMedCrossRefGoogle Scholar
  125. 125.
    Suh JS, Jeong EK, Shin KH, et al. Minimizing artifacts caused by metallic implants at MR imaging: experimental and clinical studies. AJR. 1998;171:1207–13.PubMedCrossRefGoogle Scholar
  126. 126.
    Frazzini VI, Kagetsu NJ, Johnson CE, Destian S. Internally stabilized spine: optimal choice of frequency-encoding gradient direction during MR imaging minimizes susceptibility artifact from titanium vertebral body screws. Radiology. 1997;204:268–72.PubMedCrossRefGoogle Scholar
  127. 127.
    Naraghi AM, White LM. Magnetic resonance imaging of joint replacements. Semin Musculoskelet Radiol. 2006;10(1):98–106.PubMedCrossRefGoogle Scholar
  128. 128.
    Lu W, Pauly KB, Gold GE, et al. SEMAC: slice encoding for metal artifact correction in MRI. Magn Reson Med. 2009;62:66–76.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Guermazi A, Miaux Y, Zaim S, Peterfy CG, White D, Genant HK. Metallic artefacts in MR imaging: effects of main field orientation and strength. Clin Radiol. 2003;58:322–8.PubMedCrossRefGoogle Scholar
  130. 130.
    Peh WC, Chan JH. Artifacts in musculoskeletal magnetic resonance imaging: identification and correction. Skelet Radiol. 2001;30(4):179–91.CrossRefGoogle Scholar
  131. 131.
    F DG, Santini F, Herzka DA, et al. Fat-suppression techniques for 3-T MR imaging of the musculoskeletal system. Radiographics. 2014;34(1):217–33.CrossRefGoogle Scholar
  132. 132.
    Hayter CL, Koff MF, Shah P, et al. MRI after arthroplasty: comparison of MAVRIC and conventional fast spin-echo techniques. AJR. 2011;197(3):W405–1.PubMedCrossRefGoogle Scholar
  133. 133.
    Chen CA, Chen W, Goodman SB, et al. New MR imaging methods for metallic implants in the knee: artifact correction and clinical impact. J Magn Reson Imaging. 2011;33:1121–7.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Toms AP, Smith-Bateman C, Malcolm PN, et al. Optimization of metal artefact reduction (MAR) sequences for MRI of total hip prostheses. Clin Radiol. 2010;65:447–52.PubMedCrossRefGoogle Scholar
  135. 135.
    Kolind SH, MacKay AL, Munk PL, et al. Quantitative evaluation of metal artifact reduction techniques. J Magn Reson Imaging. 2004;20:487–95.PubMedCrossRefGoogle Scholar
  136. 136.
    Nwawka OK, Konin GP, Sneag DB, et al. Magnetic resonance imaging of shoulder arthroplasty: review article. HSS J. 2014 Oct;10(3):213–24.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Koch KM, Brau AC, Chen W, et al. Imaging near metal with a MAVRIC-SEMAC hybrid. Magn Reson Med. 2011;65:71–82.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Owen RS, Iannotti JP, Kneeland JB, Dalinka MK, Deren JA, Oleaga L. Shoulder after surgery: MR imaging with surgical validation. Radiology. 1993;186:443–7.PubMedCrossRefGoogle Scholar
  139. 139.
    Magee TH, Gaenslen ES, Seitz R, Hinson GA, Wetzel LH. MR imaging of the shoulder after surgery. AJR. 1997;168:925–8.PubMedCrossRefGoogle Scholar
  140. 140.
    Stoller DW, Wolf EM. The shoulder. In: Stoller DW, editor. Magnetic resonance imaging in orthopaedics and sports medicine. 2nd ed. Philadelphia, PA: Lippincott-Raven; 1997. p. 597–742.Google Scholar
  141. 141.
    Zlatkin MB. MRI of the postoperative shoulder. Skelet Radiol. 2002;31:63–80.CrossRefGoogle Scholar
  142. 142.
    Resnick D. Shoulder. In: Resnick D, Kang HS, editors. Internal derangements of joints: emphasis on MR imaging. Philadelphia, PA: Saunders; 1997. p. 163–333.Google Scholar
  143. 143.
    Calvert PT, Packer NP, Stoker DJ, Bayley JI, Kessel L. Arthrography of the shoulder after operative repair of the torn rotator cuff. J Bone Joint Surg Br. 1986;68:147–15.PubMedCrossRefGoogle Scholar
  144. 144.
    DeOrio JK, Cofield RH. Results of a second attempt at surgical repair of a failed initial rotator-cuff repair. J Bone Joint Surg Am. 1984;66:563–56.PubMedCrossRefGoogle Scholar
  145. 145.
    Duc SR, Mengiardi B, Pfirmann CW, et al. Diagnostic performance of MR arthrography after rotator cuff repair. AJR. 2006;186:237–41.PubMedCrossRefGoogle Scholar
  146. 146.
    Wagner SC, Schweitzer ME, Morrison WB, Fenlin JM, Bartolozzi AR. Shoulder instability: accuracy of MR imaging performed after surgery in depicting recurrent injury—initial findings. Radiology. 2002;222:196–203.PubMedCrossRefGoogle Scholar
  147. 147.
    Jazrawi LM, Alaia MJ, Chang G, et al. Advances in magnetic resonance imaging of articular cartilage. J Am Acad Orthop Surg. 2011;19(7):420–9.PubMedCrossRefGoogle Scholar
  148. 148.
    Wiener E, Hodler J, Pfirrmann CW. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) of cadaveric shoulders: comparison of contrast dynamics in hyaline and fibrous cartilage after intra-articular gadolinium injection. Acta Radiol. 2009;50(1):86–92.PubMedCrossRefGoogle Scholar
  149. 149.
    Maizlin ZV, Clement JJ, Patola WB, et al. T2 mapping of articular cartilage of glenohumeral joint with routine MRI correlation–initial experience. HSS J. 2009;5(1):61–6.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    La Rocca Vieira R, Pakin SK, de Albuquerque Cavalcanti CF, et al. Three-dimensional spin-lock magnetic resonance imaging of the shoulder joint at 3 T: initial experience. Skelet Radiol. 2007;36(12):1171–5.CrossRefGoogle Scholar
  151. 151.
    Bittersohl B, Miese FR, Dekkers C, et al. T2* mapping and delayed gadolinium-enhanced magnetic resonance imaging in cartilage (dGEMRIC) of glenohumeral cartilage in asymptomatic volunteers at 3 T. Eur Radiol. 2013;23(5):1367–74.PubMedCrossRefGoogle Scholar
  152. 152.
    Iwasaki K, Tafur M, Chang EY, Statum S, Biswas R, Tran B, Bae WC, Du J, Bydder GM, Chung CB. High-resolution qualitative and quantitative magnetic resonance evaluation of the glenoid labrum. J Comput Assist Tomogr. 2015;39(6):936–44.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Chang G, Sherman O, Madelin G, et al. MR imaging assessment of articular cartilage repair procedures. Magn Reson Imaging Clin N Am. 2011;19(2):323–37.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Keenan KE, Besier TF, Pauly JM, et al. Prediction of glycosaminoglycan content in human cartilage by age, T1ρ and T2 MRI. Osteoarthr Cartil. 2011;19(2):171–9.PubMedCrossRefGoogle Scholar
  155. 155.
    Lee SY, Park HJ, Kwon HJ, et al. T2 relaxation times of the glenohumeral joint at 3.0 T MRI in patients with and without primary and secondary osteoarthritis. Acta Radiol. 2015;56(11):1388–95.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Zwanger-Pesiri RadiologyLindenhurstUSA
  2. 2.Department of RadiologyNew York University Langone HealthNew YorkUSA
  3. 3.Penn Medicine, Department of RadiologyPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaUSA

Personalised recommendations