Advertisement

Blackboxing Data—Conceptualizing Data-Driven Exploration from a Business Perspective

  • Robert WinterEmail author
Chapter

Abstract

Digitalization and data-driven exploration call for increasingly multi-modal management approaches. We outline what we perceive as a multi-decade conceptualization journey from a business perspective: Having started with modelling functions, data stores and dataflows, having moved towards business process modelling, having expanded to modelling of value creation and value appropriation, now also business conceptualizations for purpose-driven, informed decision-making are needed. We argue that conceptual data models inappropriately capture the essence of how business stakeholders analyze, design and manage data-driven exploration. To overcome this gap, we discuss the potential of various proposals from different fields to “black box” data exploration. In conclusion we outline a data blackboxing research agenda that includes ontology and taxonomy design, the derivation of appropriate analysis and modelling methods/techniques, case analysis and pattern discovery.

Keywords

Multi-model management Conceptual modelling Data-driven exploration 

Notes

Acknowledgements

The author wants to acknowledge Michael Blaschkes contributions not only to earlier co-authored related work (Winter & Blaschke, 2018), but also to initial discussions and research on the topic of data blackboxing. Stephan Aier provided valuable feedback to an earlier version of this text.

References

  1. Avdiji, H., Elikan, D., Missonier, S., & Pigneur, Y. (2018). Designing tools for collectively solving Ill-structured problems. In Proceedings of the 51st Hawaii International Conference on System Sciences (pp. 400–409).Google Scholar
  2. Benner, M. J., & Tushman, M. L. (2003). Exploitation, exploration, and process management: The productivity dilemma revisited. The Academy of Management Review, 28(2), 238–256.CrossRefGoogle Scholar
  3. Blaschke, M., Haki, M. K., Aier, S., & Winter, R. (2018). Value co-creation ontology-a service-dominant logic perspective. In Multikonferenz Wirtschaftsinformatik 2018 (MKWI 2018) (pp. 398–409). Lüneburg, Germany.Google Scholar
  4. Chen, H., Chiang, R. H. L., & Storey, V. C. (2012). Business intelligence and analytics: From big data to big impact. MIS Quarterly, 36(4), 1165–1188.CrossRefGoogle Scholar
  5. DalleMule, L., & Davenport, T. H. (2017, May). What’s your data strategy? Havard Busimess Review, 112–121.Google Scholar
  6. de Kinderen, S., & Ma, Q. (2015). Requirements engineering for the design of conceptual modeling languages: A goal- and value-oriented approach. Applied Ontology, 10(1), 7–24.CrossRefGoogle Scholar
  7. Dietz, J. L. G. (2006). Enterprise ontology—theory and methodology. Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
  8. Forgó, N., Hänold, S., & Schütze, B. (2017). The principle of purpose limitation and big data. In M. Corrales, M. Fenwick, & N. Forgó (Eds.), New Technology, Big Data and the Law (pp. 17–42). Singapore: Springer.CrossRefGoogle Scholar
  9. Glushko, R. J., & Tabas, L. (2009). Designing service systems by bridging the “front stage” and “back stage”. Information Systems and e-Business Management, 7(4), 407–427.CrossRefGoogle Scholar
  10. Gregor, S., & Hevner, A. R. (2013). Positioning and presenting design science research for maximum impact. MIS Quarterly, 37(2), 337–355.CrossRefGoogle Scholar
  11. Hashem, I. A. T., Yaqoob, I., Anuar, N. B., Mokhtar, S., Gani, A., & Ullah Khan, S. (2015). The rise of “big data” on cloud computing: Review and open research issues. Information Systems, 47, 98–115.CrossRefGoogle Scholar
  12. Hoberman, S., Burbank, D., & Bradley, C. (2009). Data modeling for the business: A handbook for aligning the business with IT using high-level data models. Basking Ridge, NJ: Technics Publications.Google Scholar
  13. Iivari, J., Hirschheim, R., & Klein, H. K. (2000). A dynamic framework for classifying information systems development methodologies and approaches. Journal of Management Information Systems, 17(3), 179–218.CrossRefGoogle Scholar
  14. Iivari, J., Parsons, J., & Wand, Y. (2006). Research in information systems analysis and design: Introduction to the special issue. Journal of the Association for Information Systems, 7(8), 509–513.CrossRefGoogle Scholar
  15. Loebbecke, C., & Picot, A. (2015). Reflections on societal and business model transformation arising from digitization and big data analytics: A research agenda. The Journal of Strategic Information Systems, 24(3), 149–157.CrossRefGoogle Scholar
  16. Lusch, R. F., & Nambisan, S. (2015). Service innovation: A service-dominant logic perspective. MIS Quarterly, 39(1), 155–175.CrossRefGoogle Scholar
  17. Nickerson, R. C., Varshney, U., & Muntermann, J. (2013). A method for taxonomy development and its application in information systems. European Journal of Information Systems, 22(3), 336–359.CrossRefGoogle Scholar
  18. Osterwalder, A. (2004). The business model ontology—A proposition in a design science approach. Dissertation, University of Lausanne.Google Scholar
  19. Patrício, L., Fisk, R. P., Falcão e Cunha, J., & Constantine, L. (2011). Multilevel service design: From customer value constellation to service experience blueprinting. Journal of Service Research, 14(2), 180–200.CrossRefGoogle Scholar
  20. Ross, D. T., & Schoman, K. E. (1977). Structured analysis for requirements definition. IEEE Transactions on Software Engineering, SE-3(1), 6–15.CrossRefGoogle Scholar
  21. Rummler, G. A., & Brache, A. P. (1995). Improving performance: How to manage the white space in the organization chart (2nd ed.). San Francisco: Jossey-Bass.Google Scholar
  22. Scheer, A. W. (1987). Neue Architektur Für EDV-Systeme zur Produktionsplanung und -Steuerung. Saarbrücken: Springer.CrossRefGoogle Scholar
  23. Sen, A., Ramamurthy, K. N., & Sinha, A. P. (2011). A model of data warehousing process maturity. IEEE Transactions on Software Engineering, 38(2), 336–353.CrossRefGoogle Scholar
  24. Strauch, B. (2002). Entwicklung einer Methode für die Informationsbedarfsanalyse im Data Warehousing. Dissertation, University of St. Gallen.Google Scholar
  25. Tilson, D., Lyytinen, K., & Sørensen, C. (2010). Research commentary—digital infrastructures: The missing IS research agenda. Information Systems Research, 21(4), 748–759.CrossRefGoogle Scholar
  26. Vargo, S. L., & Lusch, R. F. (2016). Institutions and axioms: An extension and update of service-dominant logic. Journal of the Academy of Marketing Science, 44(1), 5–23.CrossRefGoogle Scholar
  27. Vargo, S. L., Maglio, P. P., & Akaka, M. A. (2008). On value and value co-creation: A service systems and service logic perspective. European Management Journal, 26(3), 145–152.CrossRefGoogle Scholar
  28. Winter, R., & Blaschke, M. (2018). Same same but different—federating enterprise modelling for the digitalized and data-driven enterprise. In Proceedings of the 9th International Workshop on Enterprise Modeling and Information Systems Architectures (pp. 51–57). http://ceur-ws.org/Vol-2097/paper9.pdf.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of St. GallenSt. GallenSwitzerland

Personalised recommendations