Advertisement

Some Features of Nonequilibrium Flow of the Carbon Dioxide Around Blunt Bodies

  • Nina G. Syzranova
  • Yuriy D. Shevelev
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 133)

Abstract

We consider the hypersonic CO2 flow field around a spaceship in the Martian atmosphere using different models of multi-component diffusion. Transport coefficients of a multi-component gas mixture determined in accordance to the kinetic theory are compared with the coefficients calculated using approximate expressions. We present the numerical results illustrating the influence of these approaches on the heat transfer near the surface of the spaceship moving in the Martian atmosphere.

Keywords

Hypersonic flow Multi-component diffusion Transfer processes Spaceship Fick’s law 

References

  1. 1.
    Anfimov, N.A.: Mechanics and engineering. Izv. Akademii nauk SSSR 5, 117–123 (1963). (in Russian)Google Scholar
  2. 2.
    Wilke, C.R.: Diffusional properties of multicomponent gases. Chem. Eng. Progr. 46(2), 95–101 (1950)Google Scholar
  3. 3.
    Golovachev, YuP: Numerical Simulation of Viscous Gas Flows in Shock Layer. Nauka, Moscow (1996)zbMATHGoogle Scholar
  4. 4.
    Vlasov, V.N., Gorshkov, A.B.: Comparison of calculation results of hypersonic flow around blunted bodies with the OREX flight experiment. Izv.RAS Mekh. Zhidk. Gaza 5, 160–168 (2001). (in Russian)Google Scholar
  5. 5.
    Shevelev, Y.D., Syzranova, N.G., Nagnibeda, E.A., Kustova, E.V.: Bulk-viscosity effect in CO2 hypersonic flow around blunt bodies. Doklady Phys. 60(5), 207–209 (2015). (in Russian)CrossRefGoogle Scholar
  6. 6.
    Pilyugin, N.N., Tirskii, G.A.: The Dynamics of Ionized Radiating Gas. Izd. MGU, Moscow (1989)Google Scholar
  7. 7.
    Hirschfelder, J.O., Curtiss, C.F., Bird, R.B.: Molecular Theory of Gases and Liquids. Wiley, New York (1954)zbMATHGoogle Scholar
  8. 8.
    Kalinin, A.P., Leonas, V.B., Sermyagin, A.V.: Collision integrals for components of dissociated planetary atmospheres. Teplofiz. Vys. Temp. 9(5), 1066–1068 (1971). (in Russian)Google Scholar
  9. 9.
    Svehla, R.A.: Estimated viscosities and thermal conductivities of gases at high temperature. NASA TR. R-132 (1961)Google Scholar
  10. 10.
    Gnoffo, P.A., Wielmuenster, K.J., Hamilton, H.H., Olynick, D.R., Venkatapathy, E.: Computational aerothermodynamic design issues for hypersonic vehicles. J. Spacecraft Rockets 36(1), 21–43 (1999)CrossRefGoogle Scholar
  11. 11.
    Kustova, E., Nagnibeda, E.: On a correct description of a multi-temperature dissociating CO2 flow. Chem. Phys. 32(6), 293–310 (2006)CrossRefGoogle Scholar
  12. 12.
    Shevelev, YuD, Syzranova, N.G., Kustova, E.V., Nagnibeda, E.A.: Numerical simulation of hypersonic flows around space vehicles descending in the Martian atmosphere. Math. Models Comput. Simul. 3(2), 205–224 (2011)CrossRefGoogle Scholar
  13. 13.
    Mc. Kenzie, R.L., Arnold, J.O.: Experimental and theoretical investigation of the chemical kinetics and non-equilibrium CN radiation behind shock waves in CO2-N2-mixtures. In: AIAA Thermophysics Specialist Conference, New Orleans, LA, USA, AIAA paper no. 67-322. (1967)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Computer Aided Design of the RASMoscowRussian Federation

Personalised recommendations