The Scientific Way of the Academician Kholodov A.S. Development of a Grid-Characteristic Method

  • Igor B. PetrovEmail author
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 133)


The chapter describes the life and scientific way of Academician of the Russian Academy of Sciences Kholodov Alexander Sergeevich. The chapter covers all the major milestones of his work and provides a brief overview of his contributions to applied mathematics and numerical modeling.


Grid-characteristic method Numerical modeling Biography 


  1. 1.
    Magomedov, K.M., Kholodov, A.S.: The construction of difference schemes for hyperbolic equations based on characteristic relations. USSR Comput. Math. Math. Phys. 9(2), 158–176 (1969)CrossRefGoogle Scholar
  2. 2.
    Kholodov, A.S.: Construction of difference schemes with positive approximation for hyperbolic equations. USSR Comput. Math. Math. Phys. 18(6), 116–132 (1978)CrossRefGoogle Scholar
  3. 3.
    Kholodov, A.S., Petrov, I.B.: Regularization of discontinuous numerical solutions of equations of hyperbolic type. J. Comput. Math. Math. Phys. USSR Comput. Math. Math. Phys. 24(4), 128–138 (1984)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Petrov, I.B., Tormasov, A.G., Kholodov, A.S.: On the use of hybrid grid-characteristic schemes for the numerical solution of three-dimensional problems in the dynamics of a deformable solid. USSR Comput. Math. Math. Phys. 30(4), 191–196 (1990)CrossRefGoogle Scholar
  5. 5.
    Kholodov, A.S., Kholodov, Ja.A.: Monotonicity criteria for difference schemes designed for hyperbolic equations. Comput. Math. Math. Phys. 46(9), 1560–1588 (2006)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Kholodov, A.S.: Numerical methods for solving equations and systems of hyperbolic type. Encyclopedia of low-temperature plasma (series “B”), t. VII-1, P. 2. Mathematical modeling in low-temperature plasma. M.: “Yanus–K”, 141–174 (2009). (in Russian)Google Scholar
  7. 7.
    Kholodov, A.S.: Majorant difference schemes for parabolic equations on unstructured grids. Comput. Math. Model. 6(4), 235–241 (1995)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kholodov, A.S.: Monotonic difference schemes on irregular grids for elliptic equations in a region with many disconnected boundaries. Math. Model. Comput. Exp. 3(9), 17–33 (1994)MathSciNetGoogle Scholar
  9. 9.
    Kholodov, A.S.: Difference schemes with positive approximation for multidimensional systems of equations of hyperbolic type on irregular grids. Rational numerical simulation in continuum mechanics. M.: Nauka, 49–62 (1990). (in Russian)Google Scholar
  10. 10.
    Ivanov, V.D. Pashutin, R.A., Petrov, I.B., Tormasov, A.G., Kholodov, A.S.: Grid-characteristic methods for calculating the processes of dynamic deformation on irregular grids. Math. Model. 11(7), 118–127 (1997). (in Russian)Google Scholar
  11. 11.
    Vedernikov, A.B., Kholodov, A.S.: Numerical modeling of some coupled problems of fluid and gas dynamics. Math. Model. 5(10), 57–66 (1993). (in Russian)Google Scholar
  12. 12.
    Andreyev, A.A., Kholodov, A.S.: On three-dimensional supersonic flow past blunt bodies when interference is present. USSR Comput. Math. Math. Phys. 29(1), 103–107 (1989)CrossRefGoogle Scholar
  13. 13.
    Korotin, P.N., Petrov, I.B., Pirogov, V.B., Kholodov, A.S.: On a numerical solution of related problems of supersonic flow over deformable shells of finite thickness. USSR Comput. Math. Math. Phys. 27(4), 181–188 (1987)CrossRefGoogle Scholar
  14. 14.
    Belotserkovskij, O.M., Kholodov, A.S.: Numerical investigation of some gas dynamic problems by net-characteristic method. Lecture Notes in Physics, vol. 90, Springer-Verlag, 65–77 (1979)Google Scholar
  15. 15.
    Belocerkovskij, O.M., Osetrova, S.D., Fomin, V.N., Kholodov, A.S.: Hypersonic flow around blunted bodies by a stream of emitted gas. Proc. USSR Acad. Sci. Fluid Gas. Mech. (5), 179–181 (1975). (in Russian)Google Scholar
  16. 16.
    Magomedov, K.M., Kholodov, A.S.: On supersonic flow around a triangular wing with blunted edges. Numer. Sol. Some Prob. Effect Thermal Loads Metals, Fluid Gas Mech. 4, 159–163 (1967). (in Russian)Google Scholar
  17. 17.
    Krasil’nikov, A.V., Nikulin, A.N., Kholodov, A.S.: Some peculiarities of flow around blunted cones with large angles of opening at hypersonic speeds. Proceedings of the USSR Academy of Sciences, Fluid and gas mechanics (5), 179–181 (1975). (in Russian)Google Scholar
  18. 18.
    Belocerkovskij, O.M., Demchenko, V.V., Kosarev, V.I., Kholodov, A.S.: Numerical simulation of some problems of the laser compression of shells. USSR Comput. Math. Math. Phys. 18(2), 117–137 (1978)CrossRefGoogle Scholar
  19. 19.
    Batischeva, A.A., Batischev, O.V., Kholodov, A.S.: Unstructured adaptive grid and grid-free method for the edge Plasma fluid simulations. J. Plasma Phys. 61(5), 701–702 (1999)CrossRefGoogle Scholar
  20. 20.
    Klolodov, A.S., Stupitsky, E.L., Repin, A.J., Kholodov, Ya.A.: Numerical modeling of behavior of high-energy plasmoid of upper ionosphere. Comput. Phys. Commun. 164(1–3), 258–261 (2004)Google Scholar
  21. 21.
    Stupitsky, E.L., Kholodov, A.S.: Modeling the dynamics of a high specific energy plasma bulge in the upper atmosphere: 1. Physics of the processes and numerical simulation of the early stage of plasma bulge expansion and interaction with the ionosphere and geomagnetic field: A review. Geomagnetism and Aeronomy 52(4), 411–430 (2012)CrossRefGoogle Scholar
  22. 22.
    Kholodov, A.S., Vasilev, M.O., Molokov, E.A.: Magnetohydrodynamic models of the upper atmosphere of Earth and some applications thereof. Izv., Atmos. Oceanic Phys. 47(1), 87–107 (2011)CrossRefGoogle Scholar
  23. 23.
    Krysanov, B.Y., Kunitsyn, V.E., Kholodov, A.S.: MHD-based simulation of ionospheric perturbations general in the atmospheric superface layer. Comput. Math. Math. Phys. 51(2), 264–283 (2011)CrossRefGoogle Scholar
  24. 24.
    Petrov, I.B., Kholodov, A.S.: Numerical study of some dynamic problems of the mechanics of a deformable rigid body by the mesh-characteristic method. USSR Comput. Math. Math. Phys. 24(3), 61–73 (1984)CrossRefGoogle Scholar
  25. 25.
    Korotin, P.N., Petrov, I.B., Kholodov, A.S.: Numerical solution of some problems on the effect of thermal loads on metals. Proc. USSR Acad. Sci. Mech. solids 5, 63–69 (1989). (in Russian)Google Scholar
  26. 26.
    Ivanov V.D., Kondaurov V.I., Petrov I.B., Kholodov A.S.: Calculation of the dynamic deformation and destruction of elastoplastic bodies by the grid-characteristic method. Math. Model. 2(11), 11–29 (1990). (in Russian)Google Scholar
  27. 27.
    Petrov, I.B., Tormasov, A.G., Kholodov, A.S.: On the numerical study of nonstationary processes in multilayer deformable media. Proc. USSR Acad. Sci. Mech. solids 4, 89–95 (1989). (in Russian)Google Scholar
  28. 28.
    Kondaurov, V.I., Petrov, I.B., Kholodov, A.S.: Numerical simulation of the process of introduction of a rigid body of rotation into an elastoplastic barrier. Appl. Mech. Tech. Phys. 5, 132–139 (1984). (in Russian)Google Scholar
  29. 29.
    Bubnov, A.V., Marchenkova, T.E., Kholodov, A.S.: Mathematical modeling of irrigation-aspiration technique of factoemulsification. Ophthalmic Surg. 1, 11–15 (1991). (in Russian)Google Scholar
  30. 30.
    Simakov, S.S., Kholodov, A.S.: Computational study of oxygen concentration in human blood under low frequency disturbances. Math. Models Comput. Simul. 1(2), 283–295 (2009)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Golov, A., Simakov, S., Soe, Y.N., Pryamonosov, R., Mynbaev, O., Kholodov, A.: Multiscale CT-based computational modeling of alveolar gas exchange during artificial lung ventilation, cluster (Biot) and periodic (Cheyne-Stokes) breathings and bronchial asthma attack. Computation 5(1), article no. 11 (2017)CrossRefGoogle Scholar
  32. 32.
    Kholodov, A.S.: Some dynamic models of external respiration and blood circulation, taking into account their connectivity and transport of substances. Computer models and medicine progress. M.: Nauka, 127–163 (2001). (in Russian)Google Scholar
  33. 33.
    Kholodov, A.S. et al.: Computational models on graphs for nonlinear hyperbolic and parabolic system of equations. In: Motasoares, C.A. et al. (eds.) III European Conference on Computational Mechanics. Springer, Dordrecht (2006)Google Scholar
  34. 34.
    Kholodov, Ja.A., Kholodov, A.S. Bordonos, A.K., Morozov, I.I.: Modeling of global energy networks. Math. Model. 21(6), 3–16 (2009). (in Russian)Google Scholar
  35. 35.
    Severov, D.S., Kholodov, A.S., Kholodov, Ja.A.: Comparison of packet-level and fluid models of IP networks. Math. Models Comput. Simul. 4(4), 385–393 (2012)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Zhmurov, A.A., Kholodov, A.S., Barsegov, V.A., Trifonov, S.V., Kholodov, Ya.A.: Langevin dynamics simulation of micromechanics on graphics processors. Math. Models Comput. Simul. 4(3), 272–287 (2012)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Moscow Institute of Physics and Technology (MIPT)Dolgoprudny, Moscow RegionRussian Federation

Personalised recommendations