Advertisement

The Usage of Grid-Characteristic Method in Seismic Migration Problems

  • Vasily I. GolubevEmail author
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 133)

Abstract

This work is devoted to the numerical solution of the inverse problem of seismic survey process – migration. Oil and gas deposits has contrast subsurface boundaries and may be identified with this process. The algorithm for acoustic direct and inverse problem solution is described. The Born approximation allows to use different Green’s functions for the background model. Numerically the precision of algorithm for different input data is estimated. Migration images are compared for acoustic and elastic approximation. The better slope reproducing is identified in elastic case. Some assumptions about obtained numerical artefacts are done. The method for the elastic migration of seismic data in heterogeneous fractured media is described. The quality of two different processing chains is compared. Possible directions for the extension of this approach to the full-wave 3D simulation are identified.

Keywords

Computer simulation Seismic migration Born approximation Grid-characteristic method 

Notes

Acknowledgements

This work was supported by the Russian Foundation for Basic Research and by the Foundation “National Intellectual Development” for supporting undergraduate and graduate students and young scientists, project no. 17-37-80004_mol_ev_a.

References

  1. 1.
    Hagedoorn, J.G.: A process of seismic reflection interpretation. Geophys. Prosp. 2(2), 85–127 (1954)CrossRefGoogle Scholar
  2. 2.
    Claerbout, J.F.: Coarse grid calculations of wave in inhomogeneous media with application to delineation of complicated seismic structure. Geophysics 35(3), 407–418 (1970)CrossRefGoogle Scholar
  3. 3.
    Claerbout, J.F.: Earth Soundings Analysis: Processing Versus Inversion. Stanford University (2004)Google Scholar
  4. 4.
    Claerbout, J.F., Guitton, A.: Ricker-compliant deconvolution. Geophys. Prosp. 63(3), 615–625 (2014)CrossRefGoogle Scholar
  5. 5.
    Numerical and physical modeling of diffraction. In: Klem-Musatov, K., Hoeber, H.C., Moser, T.J., Pelissier, M.A. (eds.) Seismic Diffraction, SEG Geophysics Reprint Series 30 (2016)Google Scholar
  6. 6.
    Schneider, W.A.: Analyzing operators of 3-D imaging software with impulse responses. Geophysics 64(4), 1079–1092 (1999)CrossRefGoogle Scholar
  7. 7.
    Stolt, R.H.: Migration by Fourier transform. Geophysics 43(1), 23–48 (1978)CrossRefGoogle Scholar
  8. 8.
    Weglein, A.B., Araújo, F.V., Carvalho, P.M., Stolt, R.H., Matson, K.H., Coates, R.T., Corrigan, D., Foster, D.J., Shaw, S.A., Haiyan Zhang, H.: Inverse scattering series and seismic exploration. Inverse Prob. 19, R27–R83 (2003)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bleistein, N., Cohen, J.K.: Stacking of narrow aperture common shot inversions. SIAM J. Appl. Math. 50(2), 569–594 (1990)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Beydoun W., Tarantola A.: First born and Rytov approximations. Modeling and inversion conditions in a canonical example. J. Acoust. Soc. Am. 83(3), 1045–1055 (1988)CrossRefGoogle Scholar
  11. 11.
    Oboznenko, I.L.: Modified Born approximation for solving scattering problems. J. Acoust. Soc. Am. 113(4), article no 2284 (2003)CrossRefGoogle Scholar
  12. 12.
    McMechan, G.: Determination of source parameters by wavefield extrapolation. Geophys. J. Int. 71(3), 613–628 (1982)CrossRefGoogle Scholar
  13. 13.
    McMechan, G.: Migration by extrapolation of time-dependent bound-ary values. Geophys. Prosp. 31(3), 413–420 (1983)CrossRefGoogle Scholar
  14. 14.
    Baysal, E., Kosloff, D., Sherwood, J.: Reverse time migration. Geophysics 48(11), 1514–1524 (1983)CrossRefGoogle Scholar
  15. 15.
    Gray, S.H.: Frequency-selective design of the Kirchhoff migration operator. Geophys. Prosp. 40(5), 565–571 (1992)CrossRefGoogle Scholar
  16. 16.
    Moser, T.J.: Review of ray-Born forward modeling for migration and diffraction analysis. Stud. Geophys. Geod. 56(2), 411–432 (2012)CrossRefGoogle Scholar
  17. 17.
    Thierry, P., Operto, S., Lambare, G.: Fast 2-D ray + Bornmigration/inversion in complex media. Geophysics 64(1), 162–181 (1999)CrossRefGoogle Scholar
  18. 18.
    Sun, R., McMechan, G., Hsiao, H.H., Chow, J.: Separating P- and S-waves in prestack elastic seismograms using divergence and curl. Geophysics 69(1), 286–297 (2004)CrossRefGoogle Scholar
  19. 19.
    Amundsen, L., Reitan, A.: Decomposition of multicomponent sea-floor data into upgoing and downgoing P- and S-waves. Geophysics 60(2), 563–572 (1995)CrossRefGoogle Scholar
  20. 20.
    Amano, H.: An analytical solution to separate P-waves and S-waves in VSP wavefields. Geophysics 60(2), 955–967 (1995)CrossRefGoogle Scholar
  21. 21.
    Sun, R., McMechan, G.A.: Scalar reverse-time depth migration of prestack elastic seismic data. Geophysics 66(5), 1519–1527 (2001)CrossRefGoogle Scholar
  22. 22.
    Whitmore, N.D., Marfurt, K.J.: Method for depth imaging multicomponent seismic data. U.S. Patent 4 766 574 (1988)Google Scholar
  23. 23.
    Jiao, K., Huang, W., Vigh, D., Kapoor, J., Coates, R., Starr, E.W., Cheng, X.: Elastic migration for improving salt and subsalt imaging and inversion. SEG Tech. Prog. Expanded Abstr. 2012, 1–5 (2012)Google Scholar
  24. 24.
    Kuo, J.T., Dai, T.-F.: Kirchhoff elastic wave migration for the case of noncoincident source and receiver. Geophysics 49(8), 1223–1238 (1984)CrossRefGoogle Scholar
  25. 25.
    Keho, T.H., Wu, R.S.: Elastic Kirchhoff migration for vertical seismic profiles. In: 67th Ann. Int. Mtg., Soc. Expl. Geophys., Expanded Abstracts, pp. 774–776 (1987)Google Scholar
  26. 26.
    Hokstad, K.: Multicomponent Kirchhoff migration. Geophysics 65(3), 861–873 (2000)CrossRefGoogle Scholar
  27. 27.
    Zhe, J., Greenhalgh, S.A.: Prestack multicomponent migration. Geophysics 62(2), 598–613 (1997)CrossRefGoogle Scholar
  28. 28.
    Gherasim, M.: 3-D VSP elastic Kirchhoff pre-stack depth migration. Vinton Dome, Louisiana (2005)Google Scholar
  29. 29.
    Luo, Y., Tromp, J., Denel, B., Calandra, H.: 3D coupled acoustic-elastic migration with topography and bathymetry based on spectral-element and adjoint methods. Geophysics 78(4), S193–S202 (2013)CrossRefGoogle Scholar
  30. 30.
    Lu, R., Yan, J., Traynin, P., Anderson, J.E., Dickens, T.: Elastic RTM: Anisotropic wave-mode separation and converted-wave polarization correction. SEG Technical Program Expanded Abstracts 2010, 3171–3175 (2010)CrossRefGoogle Scholar
  31. 31.
    Xie, X., Wu, R.: Multicomponent prestack depth migration using the elastic screen method. Geophysics 70(1), S30–S37 (2005)CrossRefGoogle Scholar
  32. 32.
    Yan, J., Sava, P.: Isotropic angle-domain elastic reverse-time migration. Geophysics 73(6), S229–S239 (2008)CrossRefGoogle Scholar
  33. 33.
    Beydoun, W.B., Mendes, M.: Elastic ray-Born L2-migration/inversion. Geophys. J. Int. 97(1), 151–160 (1989)CrossRefGoogle Scholar
  34. 34.
    Beylkin, G., Burridge, R.: Linearized inverse scattering problems in acoustics and elasticity. Wave Motion 12(1), 15–52 (1990)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Eaton, D.W.S., Stewart, R.R.: 2-1/2 D elastic ray-Born migration/inversion theory for transversely isotropic media. CREWES Project Research Report 2, 361–377 (1990)Google Scholar
  36. 36.
    Bansal, R., Sen, M.K.: Ray-Born inversion for fracture parameters. Geophys. J. Int. 180(3), 1274–1288 (2010)CrossRefGoogle Scholar
  37. 37.
    Danilin, A.N.: The extraction of diffractors in complex acoustic media on the basis of the method CSP-RTD. Bulletin of the Baltic Federal University. I. Kant, vol. 4, 143–147 (2015) (In Russian)Google Scholar
  38. 38.
    Voynov, O.Y., Golubev, V.I., Zhdanov, M.S., Petrov, I.B.: Migration of elastic wavefield using adjoint operator and born approximation. In: Favorskaya, A.V., Petrov, I.B. (eds) Innovations in Wave Processes Modelling and Decision Making: Grid-Characteristic Method and Applications, SIST vol. 90, pp. 219–240 (2018)CrossRefGoogle Scholar
  39. 39.
    Favorskaya, A.V., Golubev, V.I.: About applying Rayleigh formula based on the Kirchhoff integral equations for the seismic exploration problems. Computer Research and Modeling 9(5), 761–771 (2017)CrossRefGoogle Scholar
  40. 40.
    Zhdanov, M.S.: Geophysical Inverse Theory and Regularization Problems. Methods in Geochemistry and Geophysics, 36, Elsevier (2002)Google Scholar
  41. 41.
    Favorskaya, A.V., Khokhlov, N.I., Golubev, V.I., Ekimenko, A.V., Pavlovskiy, Y.V., Khromova, I.Y., Petrov, I.B.: Wave Processes Modelling in Geophysics. In: Favorskaya, A.V., Petrov, I.B. (eds) Innovations in Wave Processes Modelling and Decision Making: Grid-Characteristic Method and Applications, SIST vol. 90, pp. 187–218 (2018)CrossRefGoogle Scholar
  42. 42.
    Golubev, V.I., Petrov, I.B., Khokhlov, N.I.: Simulation of seismic processes inside the planet using the hybrid grid-characteristic method. Mathematical Models and Computer Simulations 7(5), 439–445 (2015)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Golubev, V.I., Khokhlov, N.I.: Estimation of anisotropy of seismic response from fractured geological objects. Computer Research and Modeling 10(2), 231–240 (2018)CrossRefGoogle Scholar
  44. 44.
    Golubev, V.I., Gilyazutdinov, R.I., Petrov, I.B., Khokhlov, N.I., Vasyukov, A.V.: Simulation of dynamic processes in three-dimensional layered fractured media with the use of the grid-characteristic numerical method. J. Applied Mechanics and Technical Physics 58(3), 539–545 (2017)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Golubev, V.I., Voinov, O.Y., Zhuravlev, Y.I.: On seismic imaging of fractured geological media. Doklady Mathematics 96(2), 514–516 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Moscow Institute of Physics and Technology (MIPT)Dolgoprudny, Moscow RegionRussian Federation

Personalised recommendations