Advertisement

Development and Applications of Computational Methods

  • Igor B. Petrov
  • Alena V. FavorskayaEmail author
  • Margarita N. Favorskaya
  • Sergey S. Simakov
  • Lakhmi C. Jain
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 133)

Abstract

The chapter presents a brief description of chapters that contribute to the development and applications of computational methods in different areas, i.e. deformable solid bodies, seismic stability, seismic prospecting, migration, elastic and acoustic waves investigation, gas dynamics, astrophysics, aerodynamics, fluid dynamics, turbulent flows, hypersonic flows, detonation waves, composite materials, fracture mechanics, melting of metals, mathematical economics, medicine and biology. Computational methods for solving the problems of deformable solid bodies, gas and hydro dynamics, and medicine are considered in more detail. The third, the fourth and the fifth parts of the book are devoted to these three topics. Computational methods for solving the problems in the rest of the scientific fields are presented in the second part of the book.

Keywords

Computational methods Numerical experiments Parallel algorithms Deformable solid bodies Seismic stability Seismic prospecting Migration Elastic and acoustic waves investigation Gas dynamics Astrophysics Aerodynamics Fluid dynamics Turbulent flows Hypersonic flows Detonation waves Melting of metals Composite materials Fracture mechanics Mathematical economics Medicine 

References

  1. 1.
    Magomedov, K.M., Kholodov, A.S.: The construction of difference schemes for hyperbolic equations based on characteristic relations. USSR Comput. Math. Math. Phy. 9(2), 158–176 (1969)CrossRefGoogle Scholar
  2. 2.
    Tolstykh, A.I.: High accuracy non-centered compact difference schemes for fluid dynamics applications. World Scientific, Singapore (1994)CrossRefGoogle Scholar
  3. 3.
    Golubev, V.I., Petrov, I.B., Khokhlov, N.I.: Compact grid-characteristic schemes of higher orders of accuracy for a 3D linear transport equation. Math. Models Comput. Simul. 8(5), 577–584 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Khokhlov, N., Ivanov, A., Zhdanov, M., Petrov, I., Ryabinkin, E.: Applying OpenCL technology for modelling seismic processes using grid-characteristic methods. In: International Conference on Distributed Computer and Communication Networks (DCCN 2016), pp. 577–588. Springer, Cham (2016)Google Scholar
  5. 5.
    Maksimova, A.G., Lazareva, G.G., Arakcheev, A.S.: Computer calculation of heating of various geometry of cracks formed under pulsed heat load. In: Bulletin of CC: Computer Science 41, NCC Publisher, Novosibirsk (2018)Google Scholar
  6. 6.
    Klemashev, N., Shananin, A.: Inverse problems of demand analysis and their applications to computation of positively-homogeneous Konus-Divisia indices and forecasting. J. Inverse Ill-Posed Probl 24(4), 367–391 (2015)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Laitinen, E., Lapin, A., Lapin, S.: On the iterative solution of finite-dimensional inclusions with applications to optimal control problems. Comp. Methods Appl. Math. 10(3), 283–301 (2010)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Burago, N.G., Nikitin, I.S., Yakushev, V.L.: Hybrid numerical method for unsteady problems of continuum mechanics using arbitrary moving adaptive overlap grids. Comput. Math. Math. Phys. 56(6), 1065–1074 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Beklemysheva, K.A., Ermakov, A.S., Petrov, I.B., Vasyukov, A.V.: Numerical simulation of the failure of composite materials by using the grid-characteristic method. Math. Models Comput. Simul. 5(8), 557–567 (2016)CrossRefGoogle Scholar
  10. 10.
    Favorskaya, A.V., Zhdanov, M.S., Khokhlov, N.I., Petrov, I.B.: Modelling the wave phenomena in acoustic and elastic media with sharp variations of physical properties using the grid-characteristic method. Geophys. Prospect. 66(8), 1485–1502 (2018)CrossRefGoogle Scholar
  11. 11.
    Biryukov, V.A., Muratov, M.V., Petrov, I.B., Sannikov, A.V., Favorskaya, A.V.: Application of the grid-characteristic method on unstructured tetrahedral meshes to the solution of direct problems in seismic exploration of fractured layers. Comput. Math. Math. Phy. 55(10), 1733–1742 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Stognii, P., Petrov, D., Khokhlov, N., Favorskaya, A.: Numerical modeling of influence of ice formations under seismic impacts based on grid-characteristic method. Procedia Comput. Sci. 112, 1497–1505 (2017)CrossRefGoogle Scholar
  13. 13.
    Golubev, V.I., Voinov, O.Y., Zhuravlev, Y.I.: On seismic imaging of fractured geological media. Doklady Math. 96(2), 514–516 (2017)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Golubev, V.I., Voinov, O.Y., Petrov, I.B.: Seismic imaging of fractured elastic media on the basis of the grid-characteristic method. Comput. Math. Math. Phy. 58(8), 1309–1315 (2018)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Pathak, R., Khare, R.K.: Seismic response prediction of reinforced concrete single barrel shell structures by nonlinear static analysis. Indian Concr. J. 91(10), 61–68 (2017)Google Scholar
  16. 16.
    Astanin, A.V., Dashkevich, A.D., Petrov, I.B., Petrov, M.N., Utyuzhnikov, S.V., Khokhlov, N.I.: Modeling the influence of the Chelyabinsk meteorite’s bow shock wave on the Earth’s surface. Math. Models Comput. Simul. 9(2), 133–141 (2017)CrossRefGoogle Scholar
  17. 17.
    Belotserkovskii, O.M., Babakov, A.V., Beloshitskii, A.V., Gaidaenko, V.I., Dyadkin, A.A.: Numerical simulation of some problems of recovery capsule aerodynamics. Math. Models Comput. Simul. 8(5), 568–576 (2016)CrossRefGoogle Scholar
  18. 18.
    Bychkov, I.M., Vyshinsky, V.V., Nosachev, L.V.: Investigation of the flow pattern in a gas-jet Hartmann resonator. Tech. Phys. 54(8), 1110–1115 (2009)CrossRefGoogle Scholar
  19. 19.
    Titarev, V.A., Shakhov, E.M.: Unsteady rarefied gas flow with Shock wave in a channel. Fluid Dyn. 53(1), 143–151 (2018)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Shaydurov, V., Shchepanovskaya, G., Yakubovich, M.: Numerical simulation of supersonic flows in a channel. Russian J. Numer. Anal. Math. Modell. 27(6), 585–602 (2012)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Shevelev, YuD, Syzranova, N.G., Kustova, E.V., Nagnibeda, E.A.: Numerical simulation of hypersonic flows around space vehicles descending in the Martian atmosphere. Math. Models Comput. Simul. 3(2), 205–224 (2011)CrossRefGoogle Scholar
  22. 22.
    Utyuzhnikov, S.V.: Some new approaches to building and implementation of wall-functions for modeling of near-wall turbulent flows. Comput. Fluids 34(7), 771–784 (2005)CrossRefGoogle Scholar
  23. 23.
    Belotserkovskii, O.M., Chechetkin, V.M., Fortova, S.V., Oparin, A.M., Popov, YuP, Lugovsky, AYu., Mukhin, S.I.: The turbulence in free shear flows and in accretion discs. Astron. Astrophys. Trans. 25(5–6), 419–434 (2006)CrossRefGoogle Scholar
  24. 24.
    Maksimov, F.A., Ostapenko, N.A., Zubin, M.A.: Conical flows near V-shaped wings with shock waves attached on leading edges. In: Knight, D., Lipatov, I., Reijasse, Ph. (eds.) Progress in flight physics. vol. 7, pp. 453–474 (2015)Google Scholar
  25. 25.
    Lopato, A.I., Utkin, P.S.: Toward second-order algorithm for the pulsating detonation wave modeling in the shock-attached frame. Combust. Sci. Technol. 188(11–12), 1844–1856 (2016)CrossRefGoogle Scholar
  26. 26.
    Shestopaloff, Y.K.: Method for finding metabolic properties based on the general growth law. Liver examples. A General framework for biological modeling. PLoS ONE 9(6): e99836.  https://doi.org/10.1371/journal.pone.0099836 (2014)CrossRefGoogle Scholar
  27. 27.
    Danilov, A.A., Pryamonosov, R.P., Yurova, A.S.: Image segmentation for cardiovascular biomedical applications at different scales. Computation 4(3) article no. 35 (2016)CrossRefGoogle Scholar
  28. 28.
    Beklemysheva, K.A., Danilov, A.A., Petrov, I.B., Salamatova, VYu., Vassilevski, YuV, Vasyukov, A.V.: Virtual blunt injury of human thorax: age-dependent response of vascular system. RJNAMM 5(30), 259–268 (2015)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Kopylov, FYu., Bykova, A.A., Shchekochikhin, DYu., El Manaa, KhE, Dzyundzya, A.N., Vasilevsky, YuV, Simakov, S.S.: Asymptomatic atherosclerosis of the brachiocephalic arteries: Current approaches to diagnosis and treatment. Ter. Arkh. 89(4), 95–100 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Igor B. Petrov
    • 1
  • Alena V. Favorskaya
    • 1
    • 2
    • 3
    Email author
  • Margarita N. Favorskaya
    • 4
  • Sergey S. Simakov
    • 1
  • Lakhmi C. Jain
    • 5
    • 6
  1. 1.Non-state educational institution “Educational Scientific and Experimental Center of Moscow Institute of Physics and Technology”Dolgoprudny, Moscow RegionRussian Federation
  2. 2.Department of Computer Science and Numerical MathematicsMoscow Institute of Physics and TechnologyDolgoprudny, Moscow RegionRussian Federation
  3. 3.Scientific Research Institute for System Studies, Russian Academy of SciencesMoscowRussian Federation
  4. 4.Reshetnev Siberian State University of Science and TechnologyKrasnoyarskRussian Federation
  5. 5.Faculty of Education, Science, Technology and MathematicsUniversity of CanberraCanberraAustralia
  6. 6.University of Technology SydneyUltimoAustralia

Personalised recommendations