Advertisement

Future Perspectives in Colorectal Cancer Treatments

  • Mahir Gachabayov
  • Roberto Bergamaschi
Chapter
Part of the Hot Topics in Acute Care Surgery and Trauma book series (HTACST)

Abstract

This chapter aims to give the reader a succinct insight of the immediate and near future perspectives in colorectal cancer treatments and to outline the role of future perspectives in value-based care. Currently unfolding innovations are discussed including indocyanine green fluorescence imaging, D3 extended mesenterectomy, robotic surgery for rectal cancer, prevention of surgical site infections, intracorporeal antiperistaltic ileocolic anastomosis in laparoscopic right colectomy, transanal total mesorectal excision and local excision of rectal cancer, pathologic response after neoadjuvant chemoradiation, and colorectal polyps. In the context of soon upcoming innovations, colorectal cancer stem cells, miRNA dysregulation and its contribution to inequity in colorectal cancer survival, colonoscopic cellular therapy, and prognostic value of cold-inducible RNA-binding protein are discussed.

Although major improvements have been attained in terms of decreasing local recurrence rates, increasing sphincter-saving surgery rates, as well as understanding patient reported outcomes, the fact remains that cure rates for colorectal cancer have been stagnating for decades. A breakthrough may not be expected to derive from the uncritical perpetuation of the same chemoradiation nor from the tedious polemics about the endless variants of minimally invasive surgery but rather from the implementation of translational research into clinical practice.

Keywords

Colorectal cancer Colectomy Total mesorectal excision Cancer survival Cancer prognosis Anastomotic leak Surgical site infection Chemoradiation Stem cells RNA-binding protein 

References

  1. 1.
    Volkmann R. Sammlung Klinischer Vortrage in Verbindung mit deutschen Kliniken. Chirurgie. 1880;29(53):1113–27.Google Scholar
  2. 2.
    Senn N. Enterorrhaphy; its history, technique and present status. JAMA. 1893;21:215–35.Google Scholar
  3. 3.
    Iordache F, Bergamaschi R. Randomized trials in colorectal surgery: a will o’ the wisp. Colorectal Dis. 2013;15(8):923–5.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Ravitch MM, Steichen FM. A stapling instrument for end-to-end inverting anastomoses in the gastrointestinal tract. Ann Surg. 1979;189(6):791–7.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Buess GF. Local excision of tumors of the rectal cavity. Dtsch Med Wochenschr. 1987;112(45):1747–8.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Heald RJ, Husband EM, Ryall RD. The mesorectum in rectal cancer surgery—the clue to pelvic recurrence? Br J Surg. 1982;69(10):613–6.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Fleshman K, Dargent DJ, Green E, Anvari M, Stryker SK, Beart RW Jr, et al. Laparoscopic colectomy for cancer is not inferior to open surgery based on 5-year data from the COST Study Group trial. Ann Surg. 2007;245:655–62.CrossRefGoogle Scholar
  8. 8.
    Swedish Rectal Cancer Trial, Cedermark B, Dahlberg M, Glimelius B, Påhlman L, Rutqvist LE, Wilking N. Improved survival with preoperative radiotherapy in resectable rectal cancer. N Engl J Med. 1997;336(14):980–7.CrossRefGoogle Scholar
  9. 9.
    Geng F, Wang Z, Yin H, Yu J, Cao B. Molecular targeted drugs and treatment of colorectal cancer: recent progress and future perspectives. Cancer Biother Radiopharm. 2017;32(5):149–60.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Foppa C, Denoya PI, Tarta C, Bergamaschi R. Indocyanine green fluorescent dye during bowel surgery: are the blood supply “guessing days” over? Tech Coloproctol. 2014;18(8):753–8.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Hardy KJ. Bowel surgery: some 18th and 19th century experience. ANZ J Surg. 1988;58:335–8.CrossRefGoogle Scholar
  12. 12.
    Ignjatovic D, Bergamaschi R. Defining the extent of mesenterectomy in right colectomy: a controversy. Colorectal Dis. 2016;18(7):649.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Spasojevic M, Stimec BV, Dyrbekk AP, et al. Lymph node distribution in the d3 area of the right mesocolon: implications for an anatomically correct cancer resection. A postmortem study. Dis Colon Rectum. 2013;56:1381–7.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Nesgaard JM, Stimec BV, Bakka AO, Edwin B, Ignjatovic D, RCC Study Group. Navigating the mesentery. A comparative pre- and per-operative visualization of the vascular anatomy. Colorectal Dis. 2015;17:810–8.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Thorsen Y, Stimec B, Andersen SN, et al. Bowel function and quality of life after small bowel denervation during right colectomy with extended D3-mesenterectomy. Tech Coloproctol. 2016;20(7):445–53.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Liang JT, Lai HS, Huang J, Sun CT. Long-term oncologic results of laparoscopic D3 lymphadenectomy with complete mesocolic excision for right-sided colon cancer with clinically positive lymph nodes. Surg Endosc. 2015;29(8):2394–401.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Fleshman J, Branda B, Sargent DJ, et al. Effect of Laparoscopic-assisted resection vs open resection of stage II or III rectal cancer on pathologic outcomes: the ACOSOG Z6051 randomized clinical trial. JAMA. 2015;314(13):1346–55.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Stevenson ARL, Solomon MJ, Lumley JW, et al. Effect of laparoscopic-assisted resection vs open resection on pathological outcomes in rectal cancer: the ALaCart randomized clinical trial. JAMA. 2015;314(13):1356–63.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Bonjer JH, Deijen CL, Abis GA, et al. A randomized trial of laparoscopic versus open surgery for rectal cancer. N Engl J Med. 2015;372:1324–32.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Jeong SY, Park JW, Nam BH, et al. Open versus laparoscopic surgery for mid-rectal or low rectal cancer after neoadjuvant chemoradiotherapy (COREAN trial): survival outcomes of an open-label, non-inferiority, randomized controlled trial. Lancet Oncol. 2014;15(7):767–74.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Tou S, Bergamaschi R. Laparoscopic rectal cancer resection: inferior to open or not? Colorectal Dis. 2016;18(3):233.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Dyatlov A, Gachabayov M, Lee H, Chudner A, Bergamaschi R. Impact of robotic learning curve on circumferential margin and quality of total mesorectal excision in rectal cancer. P426. Annual Meeting of the American Society of Colon and Rectal Surgeons, Nashville, TN, 22 May 2018.Google Scholar
  23. 23.
    Keenan JE, Speicher PJ, Thacker JK, et al. The preventative surgical site infection bundle in colorectal surgery: an effective approach to surgical site infection reduction and health care cost savings. JAMA Surg. 2014;149(14):1045–52.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Tanner J, Khan D, Ball J, et al. Post discharge surveillance to identify colorectal surgical site infection rates and costs. J Hosp Infect. 2009;72(3):242–50.CrossRefGoogle Scholar
  25. 25.
    Thompson KM, Oldenburg WA, Deschamps C, et al. Chasing zero: the drive to eliminate surgical site infections. Ann Surg. 2011;254(3):430–6; discussion 436–7.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Mahmoud NN, Turpin RS, Yang G, Saunders WB. Impact of surgical site infections on length of stay and costs in selected colorectal procedures. Surg Infect. 2009;10(6):539–44.CrossRefGoogle Scholar
  27. 27.
    Dungan KM, Braithwaite SS, Preiser JC. Stress hyperglycemia. Lancet. 2009;373(9677):1798–807.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    May AK, Kaufmann RM, Collier BR. The place for glycemic control in the surgical patient. Surg Infect. 2011;12(5):405–18.CrossRefGoogle Scholar
  29. 29.
    Kwon S, Thompson R, Delinger P, Yanez D, Farrohki E, Flum D. Importance of perioperative glycemic control in general surgery: a report from the Surgical Care and Outcomes Assessment Program. Ann Surg. 2013;257(1):8–14.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    McConnell YJ, Johnson PM, Porter GA. Surgical site infections following colorectal surgery in patients with diabetes: association with postoperative hyperglycemia. J Gastrointest Surg. 2009;13(3):508–15.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Ljungqvist O, Soreide E. Preoperative fasting. Br J Surg. 2003;90(4):400–6.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Ramos M, Khalpey Z, Lipsitz S, et al. Relationship of perioperative hyperglycemia and postoperative infections in patients who undergo general and vascular surgery. Ann Surg. 2008;248(4):585–91.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Hanazaki K, Maeda H, Okabayashi T. Relationship between perioperative glycemic control and postoperative infections. World J Gastroenterol. 2009;15(33):4122–5.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Gianotti L, Biffi R, Sandini M, et al. Preoperative oral carbohydrate load versus placebo in major elective abdominal surgery (PROCY): a randomized, placebo-controlled, multicenter, phase III trial. Ann Surg. 2018;267(4):623–30.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Gachabayov M, Senagore AJ, Abbas SK, Yelika SB, You K, Bergamaschi R. Perioperative hyperglycemia: an unmet need within a surgical site infection bundle. Tech Coloproctol. 2018;22(3):201–7.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Kielhorn BA, Senagore AJ, Asgeirsson T. The benefits of a low dose complex carbohydrate/citrulline electrolyte solution for preoperative carbohydrate loading: focus on glycemic variability. Am J Surg. 2018;215(3):373–6.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Papaconstantinou HT, Ricciardi R, Margolin DA, et al. A novel wound retractor combining continuous irrigation and barrier protection reduces incisional contamination in colorectal surgery. World J Surg. 2018.  https://doi.org/10.1007/s00268-018-4568-z.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Martinek L, You K, Giuratrabocchetta S, Gachabayov M, Lee K, Bergamaschi R. Does laparoscopic intracorporeal ileocolic anastomosis decreases surgical site infection rate? A propensity score-matched cohort study. Int J Colorectal Dis. 2018;33(3):291–8.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Van Oostendorp S, Elfrink A, Borstlap W, et al. Intracorporeal versus extracorporeal anastomosis in right hemicolectomy: a systematic review and meta-analysis. Surg Endosc. 2017;31(1):64–77.CrossRefGoogle Scholar
  40. 40.
    Wu Q, Jin C, Hu T, Wei M, Wang Z. Intracorporeal versus extracorporeal anastomosis in laparoscopic right colectomy: a systematic review and meta-analysis. J Laparoendosc Adv Surg Tech A. 2017;27(4):348–57.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Stein SA, Bergamaschi R. Extracorporeal versus intracorporeal ileocolic anastomosis. Tech Coloproctol. 2013;17(Suppl 1):S35–9.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Jian-Cheng T, Shu-Sheng W, Bo Z, Jian F, Liang Z. Total laparoscopic right hemicolectomy with 3-step stapled intracorporeal isoperistaltic ileocolic anastomosis for colon cancer: an evaluation of short-term outcomes. Medicine (Baltimore). 2016;95(48):e5538.CrossRefGoogle Scholar
  43. 43.
    Marchesi F, Pinna F, Percalli L, et al. Totally laparoscopic right colectomy: theoretical and practical advantages over the laparoassisted approach. J Laparoendosc Adv Surg Tech A. 2013;23(5):418–24.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Scatizzi M, Kroning KC, Borrelli A, Andan G, Lenzi E, Feroci F. Extracorporeal versus intracorporeal anastomosis after laparoscopic right colectomy for cancer: a case-control study. World J Surg. 2010;34(12):2902–8.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Magistro C, Lernia SD, Ferrari G, et al. Totally laparoscopic versus laparoscopic-assisted right colectomy for colon cancer: is there any advantage in short-term outcomes? A prospective comparative assessment in our center. Surg Endosc. 2013;27(7):2613–8.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Reggio S, Sciuto A, Cuccurullo D, et al. Single-layer versus double-layer closure of the enterotomy in laparoscopic right hemicolectomy with intracorporeal anastomosis: a single-center study. Tech Coloproctol. 2015;19(12):745–50.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Abrisqueta J, Ibanez N, Lujan J, et al. Intracorporeal ileocolic anastomosis in patients with laparoscopic right hemicolectomy. Surg Endosc. 2016;30(1):65–72.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Grams J, Tong W, Greenstein AJ, Salky B. Comparison of intracorporeal versus extracorporeal anastomosis in laparoscopic-assisted hemicolectomy. Surg Endosc. 2010;24(8):1886–91.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Matsuda A, Miyashita M, Matsumoto S, et al. Isoperistaltic versus antiperistaltic stapled side-to-side anastomosis for colon cancer surgery: a randomized controlled trial. J Surg Res. 2015;196(1):107–12.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Widmar M, Cummings DR, Steinhagen E, et al. Oversewing staple lines to prevent anastomotic complications in primary ileocolic resections for Crohn’s disease. J Gastrointest Surg. 2015;19(5):911–6.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Volkmann R. Concerning rectal cancer and the removal of the rectum. Dis Colon Rectum. 1986;29:679–85.CrossRefGoogle Scholar
  52. 52.
    Warren OJ, Solomon MJ. The drive toward transanal total mesorectal excision–science or rhetoric? Dis Colon Rectum. 2015;58:909–10.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Rullier E. Transanal mesorectal excision: the new challenge in rectal cancer. Dis Colon Rectum. 2015;58:621–2.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Fernandez-Hevia M, Delgado S, Castells A, et al. Transanal total mesorectal excision in rectal cancer: short-term outcomes in comparison with laparoscopic surgery. Ann Surg. 2015;261:221–7.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Denost Q, Adam JP, Rullier A, Buscail E, Laurent C, Rullier E. Perineal transanal approach: a new standard for laparoscopic sphincter-saving resection in low rectal cancer, a randomized trial. Ann Surg. 2014;260:993–9.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Velthuis S, Nieuwenhuis DH, Ruijter TEG, Cuesta MA, Bonjer HJ, Sietses C. Transanal versus traditional laparoscopic total mesorectal excision for rectal carcinoma. Surg Endosc. 2014;28:3494–9.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Wexner SD, Berho M. Transanal TAMIS total mesorectal excision (TME)—a work in progress. Tech Coloproctol. 2014;18:423–5.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Abraham NS, Durairaj R, Young JM, Young CJ, Solomon MJ. How does an historic control study of a surgical procedure compare with the “gold standard”? Dis Colon Rectum. 2006;49:1141–8.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Buess G, Theiss R, Hutterer F, et al. Transanal endoscopic surgery of the rectum - testing a new method in animal experiments. Leber Magen Darm. 1983;13(2):73–7.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Atallah S, Albert M, Larach S. Transanal minimally invasive surgery: a giant leap forward. Surg Endosc. 2010;24:2200–5.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Albert M, Atallah S, deBeche-Adams TC, Izfar S, Larach S. Transanal Minimally Invasive Surgery (TAMIS) for local excision of benign neoplasms and early-stage rectal cancer: efficacy and outcomes in the first 50 patients. Dis Colon Rectum. 2013;56:301–7.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Atallah S, Albert M, deBeche-Adams TC, Larach S. Robotic transanal minimally invasive surgery in a cadaveric model. Tech Coloproctol. 2011;15:461–4.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Popa D, Connolly TM, Barbon C, Bergamaschi R. Design defects can close a study. Colorectal Dis. 2015;17(12):1121–2.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Hompes R, Rauh SM, Hagen ME, Mortensen NJ. Preclinical cadaveric study of transanal endoscopic da Vinci surgery. Br J Surg. 2012;99:1144–8.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Marks J, Ng S, Mak T. Robotic transanal surgery (RTAS) with utilization of a next-generation single-port system: a cadaveric feasibility study. Tech Coloproctol. 2017;21(7):541–5.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Atallah S, Quinteros F, Martin-Perez B, Larach S. Robotic transanal surgery for local excision of rectal neoplasms. J Robot Surg. 2014;8:193–4.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Atallah S, Parra-Davila E, deBeche-Adams T, Albert M, Larach S. Excision of a rectal neoplasm using robotic transanal surgery (RTS): a description of the technique. Tech Coloproctol. 2012;16:389–92.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Buchs NC, Pugin F, Volonte F, Hagen ME, Morel P, Ris F. Robotic transanal endoscopic microsurgery: technical details for the lateral approach. Dis Colon Rectum. 2013;56:1194–8.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Erenler I, Aytac E, Bilgin IA, Baca B, Hamzaoglu I, Karahasanoglu T. Robotic transanal minimally invasive surgery (R-TAMIS) with the da Vinci Xi system – a video vignette. Colorectal Dis. 2017;19(4):401.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Harr JN, Obias V. Robotic-assisted transanal excision of a large rectal mass – a video vignette. Colorectal Dis. 2016;18(1):107–8.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Laird R, Obias VJ. Robotic transanal fistula repair – a video vignette. Colorectal Dis. 2015;17(1):90.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Stack ME, Umanskiy K. Robotic-assisted transanal repair of a rectovaginal fistula. J Gastrointest Surg. 2016;20(12):2106.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Hompes R, Rauh SM, Ris F, Tuynman JB, Mortensen NJ. Robotic transanal minimally invasive surgery for local excision of rectal neoplasms. Br J Surg. 2014;101:578–81.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Initial report from a Swedish multicentre study examining the role of preoperative irradiation in the treatment of patients with resectable rectal carcinoma. Swedish Rectal Cancer Trial. Br J Surg. 1993;80(10):1333–6.Google Scholar
  75. 75.
    Habr-Gama A, Perez RO, Nadalin W, et al. Operative versus nonoperative treatment for stage 0 distal rectal cancer following chemoradiation therapy: long-term results. Ann Surg. 2004;240(4):711–7; discussion 717–8.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Vailati BB, Habr-Gama A, Mattacheo AE, São Julião GP, Perez RO. Quality of life in patients with rectal cancer after chemoradiation: watch-and-wait policy versus standard resection-are we comparing apples to oranges? Dis Colon Rectum. 2018;61(3):e21.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Guillem JG, Chessin DB, Shia J, et al. Clinical examination following preoperative chemoradiation for rectal cancer is not a reliable surrogate end point. J Clin Oncol. 2005;23(15):3475–9.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Renehan AG, Malcomson L, Emsley R, et al. Watch-and-wait approach versus surgical resection after chemoradiotherapy for patients with rectal cancer (the OnCoRe project): a propensity-score matched cohort analysis. Lancet Oncol. 2016;17(2):174–83.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Torkzad MR, Påhlman L, Glimelius B. Magnetic resonance imaging (MRI) in rectal cancer: a comprehensive review. Insights Imaging. 2010;1:245–67.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Tytherleigh MG, Warren BF. Management of early rectal cancer. Br J Surg. 2008;95:409–23.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Nicholls RJ, Zinicola R, Binda GA. Indications for colorectal resection for adenoma before and after polypectomy. Tech Coloproctol. 2004;8:s291–4.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Lascarides C, Buscaglia JM, Denoya PI, Nagula S, Bucobo JC, Bergamaschi R. Laparoscopic right colectomy vs laparoscopic-assisted colonoscopic polypectomy for endoscopically unresectable polyps: a randomized controlled trial. Colorectal Dis. 2016;18(11):1050–6.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3:730–7.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Ricci-Vitiani L, Lombardi DG, Pilozzi E, et al. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007;445(7123):111–5.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Yeung TM, Mortensen NJ. Colorectal cancer stem cells. Dis Colon Rectum. 2009;52:1788–96.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Clegg LX, Li FP, Hankey BF, Chu K, Edwards BK. Cancer survival among US whites and minorities: a SEER (Surveillance, Epidemiology, and End Results) Program population-based study. Arch Intern Med. 2002;162:1985–93.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet. 2009;10:704–14.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Schetter AJ, Leung SY, Sohn JJ, et al. MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA. 2008;299:425–36.PubMedPubMedCentralGoogle Scholar
  89. 89.
    He L, Thomson JM, Hemann MT, et al. A microRNA polycistron as a potential human oncogene. Nature. 2005;435:828–33.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Shell S, Park SM, Radjabi AR, et al. Let-7 expression defines two differentiation stages of cancer. Proc Natl Acad Sci U S A. 2007;104:11400–5.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Huang Q, Gumireddy K, Schrier M, et al. The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol. 2008;10:202–10.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Li E, Ji P, Ouyang N, et al. Differential expression of miRNA in colon cancer between African and Caucasian Americans: implications for cancer racial health disparities. Int J Oncol. 2014;45(2):587–94.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Parsons D, Wang TL, Samuels Y, et al. Colorectal cancer: mutations in a signaling pathway. Nature. 2005;436:792.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Jing H, Zhou X, Dong X, et al. Abrogation of Akt signaling by isobavachalcone contributes to its anti-proliferative effects towards human cancer cells. Cancer Lett. 2010;294:167–77.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Valiunas V, Polosina Y, Miller H, et al. Connexin-specific cell-to-cell transfer of short interfering RNA by gap junctions. J Physiol. 2005;568:459–68.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Vivanco I, Sawyers CL. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer. 2002;2(7):489–501.CrossRefGoogle Scholar
  97. 97.
    Kim DH, Rossi JJ. Strategies for silencing human disease using RNA interference. Nat Rev Genet. 2007;8:173.CrossRefGoogle Scholar
  98. 98.
    Nishiyama H, Itoh K, Kaneko Y, Kishishita M, Yoshida O, Fujita J. A glycine-rich RNA-binding protein mediating cold-inducible suppression of mammalian cell growth. J Cell Biol. 1997;137:899–908.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Wellmann S, Buhrer C, Moderegger E, et al. Oxygen-regulated expression of the RNA-binding proteins RBM3 and CIRP by a HIF-1-independent mechanism. J Cell Sci. 2004;117:1785–94.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Sakurai T, Itoh K, Higashitsuji H, et al. Cirp protects against tumor necrosis factor-alpha-induced apoptosis via activation of extracellular signal-regulated kinase. Biochim Biophys Acta. 2006;1763:290–5.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Sakurai T, Kashida H, Watanabe T, et al. Stress response protein cirp links inflammation and tumorigenesis in colitis-associated cancer. Cancer Res. 2014;74(21):6119–28.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Jang HH, Lee HN, Kim SY, Hong S, Lee WS. Expression of RNA-binding motif protein 3 (RBM3) and cold-inducible RNA-binding protein (CIRP) is associated with improved clinical outcome in patients with colon cancer. Anticancer Res. 2017;37(4):1779–85.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Villanueva L, Silva L, Llopiz D, et al. The Toll like receptor 4 ligand cold-inducible RNA-binding protein as vaccination platform against cancer. Oncoimmunology. 2017;7(4):e1409321.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mahir Gachabayov
    • 1
  • Roberto Bergamaschi
    • 1
  1. 1.Section of Colorectal Surgery, Department of Surgery, Westchester Medical CenterNew York Medical CollegeValhallaUSA

Personalised recommendations