A Memetic Algorithm for the Team Orienteering Problem

  • Dimitra Trachanatzi
  • Eleftherios Tsakirakis
  • Magdalene Marinaki
  • Yannis MarinakisEmail author
  • Nikolaos Matsatsinis


The Team Orienteering Problem (TOP) is an expansion of the orienteering problem. The problem’s data is a set of nodes and each node is associated with a score value. The goal of the TOP is to construct a discrete number of routes in order to visit the nodes and collect their scores aiming to maximize the total collected score with respect to a total travel time constraint. In this paper we propose a Memetic algorithm with Similarity Operator (\(\operatorname {MSO-TOP}\)) for solving the TOP. The concept of the “similarity operator” is that feasible sub-routes of the solutions are serving as chromosomes. The efficacy of \(\operatorname {MSO-TOP}\) was tested using the known benchmark instances for the TOP. From the experiments it was concluded that “similarity operator” is a promising technique and \(\operatorname {MSO-TOP}\) produces quality solutions.


Memetic algorithm Mobile tourist guide Multiple tour maximum collection problem Museum visitor routing problem Team orienteering problem Similarity operator 


  1. 1.
    Archetti, C., Hertz, A., & Speranza, M. G. (2007). Metaheuristics for the team orienteering problem. Journal of Heuristics, 13(1), 49–76.CrossRefGoogle Scholar
  2. 2.
    Bonnefoy, L. (2010). L’optimisation par essaims particulaires appliquée au team orienteering problem. Preprint available at:
  3. 3.
    Bouly, H., Dang, D. C., & Moukrim, A. (2010). A memetic algorithm for the team orienteering problem. 4OR, 8(1), 49–70.CrossRefGoogle Scholar
  4. 4.
    Butt, S. E., & Cavalier, T. M. (1994). A heuristic for the multiple tour maximum collection problem. Computers & Operations Research, 21(1), 101–111.CrossRefGoogle Scholar
  5. 5.
    Chao, I. M., Golden, B. L., & Wasil, E. A. (1996). The team orienteering problem. European journal of operational research, 88(3), 464–474.CrossRefGoogle Scholar
  6. 6.
    Chao, I. M., Golden, B. L., & Wasil, E. A. (1996). A fast and effective heuristic for the orienteering problem. European Journal of Operational Research, 88(3), 475–489.CrossRefGoogle Scholar
  7. 7.
    Dang, D. C., Guibadj, R. N., & Moukrim, A. (2011). A PSO-based memetic algorithm for the team orienteering problem. Applications of Evolutionary Computation, Springer Berlin Heidelberg, 471–480.Google Scholar
  8. 8.
    Dang, D. C., Guibadj, R. N., & Moukrim, A. (2013). An effective PSO-inspired algorithm for the team orienteering problem. European Journal of Operational Research, 229(2), 332–344.CrossRefGoogle Scholar
  9. 9.
    Desrosiers, J., & Lübbecke, M. E. (2005). A primer in column generation, Springer US, 1–32.Google Scholar
  10. 10.
    Golden, B. L., Levy, L., & Vohra, R. (1987). The orienteering problem. Naval research logistics, 34(3), 307–318.CrossRefGoogle Scholar
  11. 11.
    Hart, W. E., Krasnogor, N., & Smith, J. E. (Eds.). (2004). Recent advances in memetic algorithms, Springer Science & Business Media, 166.Google Scholar
  12. 12.
    Ke, L., Archetti, C. & Feng, Z. (2008). Ants can solve the team orienteering problem. Computers & Industrial Engineering, 54(3), 648–665.CrossRefGoogle Scholar
  13. 13.
    Kim, B. I., Li, H., & Johnson, A. L. (2013). An augmented large neighborhood search method for solving the team orienteering problem. Expert Systems with Applications, 40(8), 3065–3072.CrossRefGoogle Scholar
  14. 14.
    Lin, S. W. (2013). Solving the team orienteering problem using effective multi-start simulated annealing. Applied Soft Computing, 13(2), 1064–1073.CrossRefGoogle Scholar
  15. 15.
    Marinakis, Y., Politis, M., Marinaki, M., & Matsatsinis, N. (2015). A Memetic-GRASP Algorithm for the Solution of the Orienteering Problem. Modelling, Computation and Optimization in Information Systems and Management Sciences, Springer International Publishing, 105–116.Google Scholar
  16. 16.
    Moscato, P. (1989). On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms. Caltech concurrent computation program, C3P Report, 826, 1989.Google Scholar
  17. 17.
    Moscato, P., & Cotta, C. (2003). A gentle introduction to memetic algorithms. Handbook of metaheuristics, Springer US, 105–144.Google Scholar
  18. 18.
    Muthuswamy, S., & Lam, S. (2011). Discrete particle swarm optimization for the team orienteering problem. Memetic Computing, 3(4), 287–303.CrossRefGoogle Scholar
  19. 19.
    Rosenkrantz, D. J., Stearns, R. E., & Lewis, II, P. M. (1977). An analysis of several heuristics for the traveling salesman problem. SIAM journal on computing, 6(3), 563–581.MathSciNetCrossRefGoogle Scholar
  20. 20.
    Souffriau, W., Vansteenwegen, P., Berghe, G. V., & Van Oudheusden, D. (2010). A path relinking approach for the team orienteering problem.Computers & Operations Research, 37(11), 1853–1859.MathSciNetzbMATHGoogle Scholar
  21. 21.
    Souffriau, W., Vansteenwegen, P., Vertommen, J., Berghe, G. V.,& Oudheusden, D. V. (2008). A personalized tourist trip design algorithm for mobile tourist guides. Applied Artificial Intelligence, 22(10), 964–985.CrossRefGoogle Scholar
  22. 22.
    Tang, H., & Miller-Hooks, E. (2005). A tabu search heuristic for the team orienteering problem. Computers & Operations Research, 32(6), 1379–1407.CrossRefGoogle Scholar
  23. 23.
    Toth, P., & Vigo, D. (Eds.). (2014). Vehicle routing: problems, methods, and applications (Vol. 18). Siam.Google Scholar
  24. 24.
    Vansteenwegen, P., Souffriau, W., & Van Oudheusden, D. (2011). The orienteering problem: A survey. European Journal of Operational Research, 209(1), 1–10.MathSciNetCrossRefGoogle Scholar
  25. 25.
    Vansteenwegen, P., Souffriau, W., Berghe, G. V., & Van Oudheusden, D. (2009). A guided local search metaheuristic for the team orienteering problem. European Journal of Operational Research, 196(1), 118–127.CrossRefGoogle Scholar
  26. 26.
    Vansteenwegen, P., Souffriau, W., Berghe, G. V., & Van Oudheusden, D. (2009). Metaheuristics for tourist trip planning. Metaheuristics in the Service Industry, Springer Berlin Heidelberg, 15–31.Google Scholar
  27. 27.
    Vansteenwegen, P., & Van Oudheusden, D. (2007). The mobile tourist guide: an OR opportunity. OR Insight, 20(3), 21–27.CrossRefGoogle Scholar
  28. 28.
    Vincent, F. Y., Lin, S. W., & Chou, S. Y. (2010). The museum visitor routing problem. Applied Mathematics and Computation, 216(3), 719–729.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Dimitra Trachanatzi
    • 1
  • Eleftherios Tsakirakis
    • 1
  • Magdalene Marinaki
    • 1
  • Yannis Marinakis
    • 1
    Email author
  • Nikolaos Matsatsinis
    • 1
  1. 1.Technical University of CreteSchool of Production Engineering and ManagementChaniaGreece

Personalised recommendations