Stabilization and Synchronization of Dynamical Networks

  • Xinzhi Liu
  • Kexue Zhang
Part of the IFSR International Series in Systems Science and Systems Engineering book series (IFSR, volume 33)


This chapter studies stabilization and synchronization problems of dynamical networks (DNs) under pinning impulsive control. Throughout this chapter, a pinning algorithm is incorporated with the impulsive control approach. In Section 6.1, stabilization of time-delay neural networks is studied. Subsection 6.1.2 proposes a delay-dependent pinning impulsive controller to stabilize the neural networks with time-delay and sufficient conditions for stabilization are presented. The obtained results show that the delay-dependent pinning impulsive controller can successfully stabilize the time-delay neural networks. However, the pinning impulsive controller depends on the network states at both impulsive instants and history times, that is, the contributions of time-delay states to the stabilization or synchronization processes can not be observed explicitly. Therefore, Subsection 6.1.3 discusses a type of pinning impulsive controllers relies only on the network states at history moments (not on the states at each impulsive instant). Results show that the proposed pinning impulsive controller can effectively stabilize the network even though only states at history moments are available to the pinning controller at each impulsive instants. In Section 6.1, only discrete delays are considered in the impulsive controllers. Then we further consider pinning impulsive controllers with both discrete and distributed time-delay effects, in Section 6.2, to synchronize the drive and response systems modeled by globally Lipschitz time-delay systems. All the theoretical results are illustrated by numerical simulations, accordingly.


  1. 5.
    T. Ayhan, M.E. Yalçin, An application of small-world cellular neural networks on odor classification. Int. J. Bifurcation Chaos 22(01), 1250013 (12 pp.) (2012)CrossRefGoogle Scholar
  2. 11.
    I.A. Basheer, M. Hajmeer, Artificial neural networks: fundamentals, computing, design, and application. J. Microbiol. Methods 43(1), 3–31 (2000)CrossRefGoogle Scholar
  3. 13.
    L. Berezansky, E. Braverman, L. Idels, New global exponential stability criteria for nonlinear delay differential systems with applications to BAM neural networks. Appl. Math. Comput. 243, 624–636 (2014)MathSciNetzbMATHGoogle Scholar
  4. 18.
    A. Buscarino, L. Fortuna, M. Frasca, G. Sciuto, Design of time-delay chaotic electronic circuits. IEEE Trans. Circuits Syst. I: Regul. Pap. 58(8), 1888–1896 (2011)MathSciNetCrossRefGoogle Scholar
  5. 19.
    P. Chatziagorakis, G. Sirakoulis, J.N. Lygouras, Design automation of cellular neural networks for data fusion applications. Microprocess. Microsyst. 36(1), 33–44 (2012)CrossRefGoogle Scholar
  6. 21.
    W.H. Chen, W.X. Zeng, Exponential stability of nonlinear time delay systems with delayed impulse effects. Automatica 47(5), 1075–1083 (2011)MathSciNetCrossRefGoogle Scholar
  7. 24.
    L.O. Chua, L. Yang, cellular neural networks: theory. IEEE Trans. Circuits Syst. 35(10), 1257–1272 (1988)MathSciNetCrossRefGoogle Scholar
  8. 28.
    P. DeLellis, M. di Bernardo, M. Porfiri, Pinning control of complex networks via edge snapping. Chaos, 21(3), Article ID 033119 (2011)MathSciNetCrossRefGoogle Scholar
  9. 41.
    W. Guo, Lag synchronization of complex networks via pinning control. Nonlinear Anal. Real World Appl. 12(5), 2579–2585 (2011)MathSciNetCrossRefGoogle Scholar
  10. 42.
    K. Hadada, A. Piroozmanda, Application of cellular neural network (CNN) method to the nuclear reactor dynamics equations. Ann. Nucl. Energy 34(5), 406–416 (2007)CrossRefGoogle Scholar
  11. 47.
    A. Hu, Z. Xu, Pinning a complex dynamical network via impulsive control. Phys. Lett. A 374(2), 186–190 (2009)CrossRefGoogle Scholar
  12. 52.
    W. Jamrozik, Cellular neural networks for welding arc thermograms segmentation. Infrared Phys. Technol. 66, 18–28 (2014)CrossRefGoogle Scholar
  13. 54.
    A. Khadra, X. Liu, X. Shen, Analyzing the robustness of impulsive synchronization coupled by linear delayed impulses. IEEE Trans. Autom. Control 4(4), 923–928 (2009)MathSciNetCrossRefGoogle Scholar
  14. 65.
    X. Li, X. Wang, G. Chen, Pinning a complex dynamical network to its equilibrium. IEEE Trans. Circuits Syst. I: Regul. Pap. 51(10), 2074–2087 (2004)MathSciNetCrossRefGoogle Scholar
  15. 79.
    X. Liu, K. Zhang, Impulsive control for stabilisation of discrete delay systems and synchronisation of discrete delay dynamical networks. IET Control Theory Appl. 8(13), 1185–1195 (2014)MathSciNetCrossRefGoogle Scholar
  16. 92.
    H. Lu, Chaotic attractors in delayed neural networks. Phys. Lett. A 298(2–3), 109–116 (2002)CrossRefGoogle Scholar
  17. 95.
    J. Lu, J. Kurths, J. Cao, N. Mahdavi, C. Huang, Synchronization control for nonlinear stochastic dynamical networks: pinning impulsive strategy. IEEE Trans. Neural Netw. Learn. Syst. 23(2), 285–292 (2012)CrossRefGoogle Scholar
  18. 96.
    J. Lu, Z. Wang, J. Cao, Pinning impulsive stabilization of nonlinear dynamical networks with time-varying delay. Int. J. Bifurcation Chaos 22(7), 1250176 (12 pp.) (2012)Google Scholar
  19. 97.
    F.R.T. Luiz, E.N.M. Elbert, Hybrid pinning control for complex networks. Int. J. Bifurcation Chaos 22(10), Article ID 1250252 (2012)Google Scholar
  20. 105.
    N. Mahdavi, M.B. Menhaj, J. Kurths, Pinning impulsive synchronization of complex dynamical networks. Int. J. Bifurcation Chaos 22(10), 1250239 (14 pp.) (2012)MathSciNetCrossRefGoogle Scholar
  21. 128.
    A.R. Trivedi, S. Datta, S. Mukhopadhyay, Application of Silicon-Germanium source Tunnel-FET to enable ultralow power cellular neural network-based associative memory. IEEE Trans. Electron Devices 61(11), 3707–3715 (2014)CrossRefGoogle Scholar
  22. 129.
    L.F.R. Turci, E.E.N. Macau, Adaptive node-to-node pinning synchronization control of complex networks. Chaos 22(3), 033151 (6 pp.) (2012)MathSciNetCrossRefGoogle Scholar
  23. 131.
    P. Van Den Driessche, X. Zou, Global attractivity in delayed Hopfield neural network models. SIAM J. Appl. Math. 58(6), 1878–1890 (1998)MathSciNetCrossRefGoogle Scholar
  24. 138.
    X. Wang, G. Chen, Pinning control of scale-free dynamical networks. Phys. A Stat. Mech. Appl. 310(3–4), 521–531 (2002)MathSciNetCrossRefGoogle Scholar
  25. 147.
    X. Yang, J. Cao, Z. Yang, Synchronization of coupled reaction-diffusion neural networks with time-varying delays via pinning-impulsive controller. SIAM J. Control Optim. 51(5), 3486–3510 (2013)MathSciNetCrossRefGoogle Scholar
  26. 149.
    N. Yildiz, E. Cesur, K. Kayaer, V. Tavsanoglu, M. Alpay, Architecture of a fully pipelined real-time cellular neural network emulator. IEEE Trans. Circuits Syst. I Regul. Pap. 62(1), 130–138 (2015)CrossRefGoogle Scholar
  27. 159.
    K. Zhang, X. Liu, Global exponential stability of nonlinear impulsive discrete systems with time delay, in The Proceedings of the 25th Chinese Control and Decision Conference, 25–27 May 2013, Guiyang, pp. 148–153 (2013)Google Scholar
  28. 171.
    J. Zhou, Q. Wu, L. Xiang, Pinning complex delayed dynamical networks by a single impulsive controller. IEEE Trans. Circuits Syst. I Regul. Pap. 58(12), 2882–2893 (2011)MathSciNetCrossRefGoogle Scholar
  29. 172.
    S. Zhou, X. Liao, J. Yu, K. Wong, Chaos and its synchronization in two-neuron systems with discrete delays. Chaos Solitons Fractals 21(1), 133–142 (2004)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Xinzhi Liu
    • 1
  • Kexue Zhang
    • 1
  1. 1.Department of Applied MathematicsUniversity of WaterlooWaterlooCanada

Personalised recommendations