Comparison of Solar-Selective Absorbance Properties of TiN, TiNxOy, and TiO2 Thin Films

  • Hanan Abd El-Fattah
  • Iman El MahallawiEmail author
  • Mostafa Shazly
  • Waleed Khalifa
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)


TiN, TiNxOy, and TiO2 thin films share many properties such as electrical, and optical properties. In this work, a comparison is made between TiN, TiNxOy, and TiO2 thin films deposited by RF magnetron sputtering (reactive sputtering) using the same pure titanium target, Argon (Ar) flow rate, nitrogen flow rates, and deposition time. In the case of TiNxOy thin film, oxygen is pumped in addition. TiO2 is obtained by annealing the sputtered TiN thin films, which were subsequently annealed at 800 °C for 2 h in air after sputtering. The optical properties of the thin films were characterized by a spectrophotometer, and Fourier-transform infrared spectroscopy (FTIR). The morphology and structure were studied by scanning electron microscope (SEM), atomic force microscope (AFM), and X-ray diffraction (XRD). The results show that TiN and TiNxOy thin films have metal-like behaviour with some similarities in structure and microstructure and differences in optical absorbance. After annealing the TiN layer, the optical absorbance of the TiO2 is equal to 94% with a stable profile at ultraviolet, visible, and near infrared ranges.


Selective absorber PVD sputtering Optical properties Microstructure TiN TiO2 TiNxOy 



The authors thank the Center of Excellence, Nano Technology center in Egypt, and the Science & Technology Development Fund (STDF) of Egypt Project No. 10663.


  1. 1.
    Jelley N, Smith T (2015) Concentrated solar power: recent developments and future challenges. Proc Inst Mech Eng Part A J Power Energy 229:693–713CrossRefGoogle Scholar
  2. 2.
    Tian Y, Zhao CY (2013) A review of solar collectors and thermal energy storage in solar thermal applications. Appl Energy 104:538–553CrossRefGoogle Scholar
  3. 3.
    Behar O, Khellaf A, Mohammedi K (2013) A review of studies on central receiver solar thermal power plants. Renew Sustain Energy Rev 23:12–39CrossRefGoogle Scholar
  4. 4.
    Barshilia HC, Selvakumar N, Rajam KS (2006) TiAlN/TiAlON/Si3N4 tandem absorber for high temperature solar selective applications. Appl Phys Lett 89:1–3CrossRefGoogle Scholar
  5. 5.
    Tharamani CN, Mayanna SM (2007) Low-cost black Cu–Ni alloy coatings for solar selective applications. Sol Energy Mater Sol Cells 91:664–669CrossRefGoogle Scholar
  6. 6.
    Glaude AS, Bousquet I, Thomas L, Flamant G (2013) Optical ulti-lay of ulti-layered coatings based on SiC(N)H materials for their potential use as high-temperature solar selective absorbers. Sol Energy Mater Sol Cells 117:315–323CrossRefGoogle Scholar
  7. 7.
    Seiffert C, Eisenhammer T, Lazarov M, Sizmann R, Blessing R (1993) Test facility for solar selective materials. ISES Solar World Congress 2:321Google Scholar
  8. 8.
    Zhang J, Chen TP, Liu YC, Liu Z, Yang HY (2016) Design of a high performance selective solar absorber with the structure of SiO2-TiO2-TiNxOy-Cu. ECS J Solid State Sci Technol 5(7):N43–N47CrossRefGoogle Scholar
  9. 9.
    Zhang K, Hao L, Du M, Mi J, Wang JN, Meng JP (2017) A review on thermal stability and high temperature induced ageing mechanisms of solar absorber coatings. Renew Sustain Energy Rev 67:1282–1299CrossRefGoogle Scholar
  10. 10.
    Lazarov MP, Sizmann R, Frei U (1993) Optimization of SiO2-TiNxOy-Cu interference absorbers: numerical and experimental results. SPIE ProceedingsGoogle Scholar
  11. 11.
    Chen F, Wang SW, Yu L, Chen X, Lu W (2014) Control of optical properties of TiNxOy films and application for high performance solar selective absorbing coatings. Opt Mater Express 4:1833–1847CrossRefGoogle Scholar
  12. 12.
    Mehdi HK, Alexander A, Berezin U, Nobuhiko F (2000) Formation of thin TiNxOy films by using a hollow cathode reactive DC sputtering system. Thin Solid Films 372:70–77CrossRefGoogle Scholar
  13. 13.
    Liu Z, Liu G, Huang Z, Liu X, Fu G (2018) Ultra-broadband perfect solar absorber by an ultra-thin refractory titanium nitride meta-surface. Sol Energy Mater Sol Cells 179:346–352CrossRefGoogle Scholar
  14. 14.
    Yin Y, Hang L, Zhang S, Bui XL (2007) Thermal oxidation properties of titanium nitride and titanium–aluminium nitride materials—A perspective for high temperature air-stable solar selective absorber applications. Thin Solid Films 515(5):2829–2832CrossRefGoogle Scholar
  15. 15.
    Cao F, Tang L, Li Y, Litvinchuk AP, Bao J, Ren Z (2017) A high-temperature stable spectrally-selective solar absorber based on cermet of titanium nitride in SiO2 deposited on lanthanum aluminate. Sol Energy Mater Sol Cells 160:12–17CrossRefGoogle Scholar
  16. 16.
    Gao XH, Guo ZM, Geng QF, Ma PJ, Wang AQ, Liu G (2017) Enhanced optical properties of TiN-based spectrally selective solar absorbers deposited at a high substrate temperature. Sol Energy Mater Sol Cells 163:91–97CrossRefGoogle Scholar
  17. 17.
    Chen HY, Lu FH (2005) Oxidation behaviour of titanium nitride films. J Vac Sci Technol A 23: 1006CrossRefGoogle Scholar
  18. 18.
    Carbonari MJ, Martinelli JR (2001) Effects of hot isostatic pressure on titanium nitride films deposited by physical vapour deposition. Mat Res 4(3):163–168CrossRefGoogle Scholar
  19. 19.
    Chakraborty J, Maity T, Kumar K, Mukherjee S (2014) Microstructure, stress and texture in sputter deposited TiN thin films: effect of substrate bias. Adv Mater Res 996:855–859CrossRefGoogle Scholar
  20. 20.
    Liang H, Xu J, Zhou D, Sun X, Chu S, Bai Y (2016) Thickness dependent microstructural and electrical properties of TiN thin films prepared by DC reactive magnetron sputtering. Ceram Int 42:2642–2647CrossRefGoogle Scholar
  21. 21.
    Zhou T, Liu D, Zhang Y, Ouyang T, Suo J (2016) Microstructure and hydrogen impermeability of titanium nitride thin films deposited by direct current reactive magnetron sputtering. J Alloy Compd 688:44–50CrossRefGoogle Scholar
  22. 22.
    Popovic M, Novaković M, Bibić N (2015) Annealing effects on the properties of TiN thin films. Proc. Appl. Ceram. 9(2):67–71CrossRefGoogle Scholar
  23. 23.
    Piallat F, Gassilloud R, Caubet P, Vallée C (2016) Investigation of TiN thin film oxidation depending on the substrate temperature at vacuum break. J Vac Sci Technol A 34(5). Scholar
  24. 24.
    Ajenifuja E, Fasasi AY, Osinkolu GA (2012) Sputtering-pressure dependent optical and microstructural properties variations in DC reactive magnetron sputtered titanium nitride thin films. Trans Indian Ceram Soc 71(4):181–188CrossRefGoogle Scholar
  25. 25.
    Penilla E, Wang J (2008) Pressure and temperature effects on stoichiometry and microstructure of nitrogen-rich TiN thin films synthesized via reactive magnetron DC-sputtering. J Nanomat 2008:267161CrossRefGoogle Scholar
  26. 26.
    Zhang L, Yang H, Pang X, Gao K, Volinsky AA (2013) Microstructure, residual stress, and fracture of sputtered TiN films. Surf Coat Technol 224:120–125CrossRefGoogle Scholar
  27. 27.
    Kennedy CE (2002) Review of Mid. To high-temperature solar selective absorber Materials. National Renewable Energy Laboratory. 520: 31267Google Scholar
  28. 28.
    Juan C, Fernando F, María HA, Raquel P, Silvia S, Sergio GR, Victor PO (2013) Design of advanced photocatalytic materials for energy and environmental applications, vol 10, p 1007Google Scholar
  29. 29.
    Tang L, Cao F, Li Y, Bao J, Ren Z (2016) High performance mid-temperature selective absorber based on titanium oxides cermet deposited by direct current reactive sputtering of a single titanium target. J Appl Phys 119:045102CrossRefGoogle Scholar
  30. 30.
    Ollier E, Dunoyer N, Szambolics H, Lorin G (2017) Nanostructured thin films for solar selective absorbers and infrared selective emitters. Sol Energy Mater Sol Cells 170:205–210CrossRefGoogle Scholar
  31. 31.
    Brunotte A, Lazarov M, Sizmann R (1992) Calorimetric measurements of the total hemispherical emittance of selective surfaces at high temperatures. SPIE. 1727:149Google Scholar
  32. 32.
    Meriea V, Pustana M, Negreab G, Bîrleanu C (2015) Research on titanium nitride thin films deposited by reactive magnetron sputtering for MEMS applications. Appl Surf Sci 358:525–532CrossRefGoogle Scholar
  33. 33.
    Vaz F, Cerqueira P, Rebouta L, Nascimento SMC, Alves E, Goudeauc P, Rivière JP (2003) Surf Coat Technol 174–175:197–203Google Scholar
  34. 34.
    Zheng K, Zhang TC, Lin P, Han YH, Li HV, Ji RJ, Zhang HV (2015) Nitroaniline degradation by TiO2 catalyst doping with manganese, Hindawi Publishing Corporation. J Chem 2015:382376Google Scholar
  35. 35.
    Bonelli M, Guzman LA, Miotello A, Calliari L, Elena M, Ossi PM (1992) Structure and optical properties of TiN films prepared by dc sputtering and by ion beam assisted deposition. Vacuum 43(5–7):459–462CrossRefGoogle Scholar
  36. 36.
    Smith GB, Swift PD, Bendavid A (1999) TiNx films with metallic behaviour at high N/Ti ratios for better solar control windows. Appl Phys Lett 75(5):630CrossRefGoogle Scholar
  37. 37.
    Carvalho P, Vaz F, Rebouta L, Cunha L, Tavares CJ, Moura C, Alves E, Cavaleiro A, Goudeau PH, Le Bourhis E, Riviere JP, Pierson JF, Banakh O (2005) Structural, electrical, optical, and mechanical characterizations of decorative ZrOxNy thin films. J Appl Phys 98(2):023715CrossRefGoogle Scholar
  38. 38.
    Graciani J, Hamad S, Sanz JF (2009) Changing the physical and chemical properties of titanium oxynitrides TiN1xOx by changing the composition. Phys Rev B 80(18):184112CrossRefGoogle Scholar
  39. 39.
    Zhao Z, Tian J, Sang Y, Cabot A, Liu H (2015) Structure, synthesis, and applications of TiO2 nanobelts. Adv Mater 27(16):2557–2582CrossRefGoogle Scholar
  40. 40.
    Yin Y, Hang L, Zhang S, Bui XL (2007) Thermal oxidation properties of titanium nitride and titanium–aluminium nitride materials—A perspective for high temperature air-stable solar selective absorber applications. Thin Solid Films 515:2829–2832CrossRefGoogle Scholar
  41. 41.
    Khan MI, Bhatti KA, Qindeel R, Althobaiti HS, Alonizan N (2017) Structural, electrical, and optical properties of multilayer TiO2 thin films deposited by sol-gel spin coating. Res Phys 7:1437–1439Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Hanan Abd El-Fattah
    • 1
  • Iman El Mahallawi
    • 1
    Email author
  • Mostafa Shazly
    • 2
  • Waleed Khalifa
    • 1
  1. 1.Metallurgical Engineering Department, Faculty of EngineeringCairo UniversityGizaEgypt
  2. 2.Mechanical Engineering Department, Faculty of EngineeringThe British University in EgyptAl-Shorouk City, CairoEgypt

Personalised recommendations