Study of Separation Between CO with H2 on Carbon Nanotube by Monte Carlo Simulation in Aluminum Smelter

  • Mohsen Ameri SiahooeiEmail author
  • Borzu Baharvand
  • Alireza Fardani
  • Mokhita Vahedi Zade
  • Sid Hadi Sajadi
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)


CO is very toxic gas, hence the separation of this gas is very important. In this study, the separation of CO and H2 has been studied. Prevent the emission of carbon monoxide in the environment is very important. In this study, Lennard–Jones potential was used for gas–gas and gas–carbon nanotube interactions, and the potential parameters for the carbon–gas and carbon–carbon interactions were obtained from the Lorenz–Berthelot combining rules. The study has been done by using the equation state of Virial and finding the second coefficient in Virial equation. Final steps were the inside density, outside density, and total density of nanotubes, and my calculation result shows that this separation is possible.


Carbon nanotube Adsorption gas Monte Carlo simulation 


  1. 1.
    Park JH et al (1998) Adsorber dynamics and optimal design of layered beds for multicomponent gas adsorption. Chem Eng Sci 53(23):3951–3963CrossRefGoogle Scholar
  2. 2.
    Rege SU et al (2000) Sorbents for air pre-purifcation in air separation. Chem Eng Sci 55:4827–4838CrossRefGoogle Scholar
  3. 3.
    Clarkson CR (2000) Binary gas adsorption/desorption isotherms: effect of moisture and coal composition upon carbon dioxide selectivity over methane. Int J Coal Geol 42:241–271CrossRefGoogle Scholar
  4. 4.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature (London) 354:56–58CrossRefGoogle Scholar
  5. 5.
    Dujardin E et al (1994) Capillarity and wetting of carbon nanotubes. Science 265(5180):1850–1852CrossRefGoogle Scholar
  6. 6.
    Ajayan PM et al (1994) Aligned carbon nanotube arrays formed by cutting a polymer resin–nanotube composite. Science 265:1212–1214CrossRefGoogle Scholar
  7. 7.
    Gelb LD, Gubbins KE (2006) Studies of binary liquid mixtures in cylindrical pores: phase separation, wetting and finite-size effects from Monte Carlo simulations. Phys A 244:112–123; (2006) Electrochemical sensors, vol 77. Steel Research Institute, pp 934–939Google Scholar
  8. 8.
    Yoo D-H, Rue G-H (2002) Study of nitrogen adsorbed on single-walled carbon nanotube bundles. J Phys Chem B 106:3371–3374CrossRefGoogle Scholar
  9. 9.
    Dong Q, Kam Liu W (2003) Load transfer mechanism in carbon nanotube ropes. Compos Sci Technol 63:1561–1569Google Scholar
  10. 10.
    Cao D, Zhang X, Chen J, Wang W, Yun J (2003) J Phys Chem B 107:13286–13292CrossRefGoogle Scholar
  11. 11.
    Cheng H, Cooper AC, Pez GP, Kostov MK, Piotrowski P, Stuart SJ (2005) J Phys Chem B 109:3780–3786CrossRefGoogle Scholar
  12. 12.
    Guay P, Stansfield BL, Rochefort A (2004) Cabon 42:2187–2193Google Scholar
  13. 13.
    Allen MP, Tildesly DJ (2002) Computer simulation in chemical physics. Wiley, Chap 1Google Scholar
  14. 14.
    Shao X, Wang W, Xue R, Shen Z (2004) J Phys Chem B 108:2970–2978CrossRefGoogle Scholar
  15. 15.
    Darkrim FL, Malbrunot P, Tartaglia GP (2002) Int J Hydrogen Energy 27:193–202Google Scholar
  16. 16.
    Simonyan VV, Johnson JK (2002) J Alloy Compd 330–332:659–665CrossRefGoogle Scholar
  17. 17.
    Williams KA, Eklund PC (2000) Chem Phys Lett 20:325–358Google Scholar
  18. 18.
    Skelland AHP (1985) Diffusional mass transfer. Wiley, New York, p 482Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Mohsen Ameri Siahooei
    • 1
    Email author
  • Borzu Baharvand
    • 1
  • Alireza Fardani
    • 1
  • Mokhita Vahedi Zade
    • 1
  • Sid Hadi Sajadi
    • 1
  1. 1.Almahdi-South Hormoz Aluminium SmelterBandar AbassIran

Personalised recommendations