Advertisement

Healthy Aging pp 201-212 | Cite as

Endocrine Health and Healthy Aging

  • Faryal S. Mirza
  • Pamela Taxel
  • Pooja LuthraEmail author
Chapter

Abstract

Aging is a heterogeneous process influenced by a variety of factors, including genetics, epigenetics, environmental exposure, and lifestyle. It is associated with numerous subtle, progressive, and predictable changes that affect the endocrine system, leading to an increased susceptibility to numerous diseases. These include disorders of glucose metabolism, thyroid and parathyroid axis, sex hormone levels, and growth hormone levels. Optimization of physiological function throughout the life span is an effective strategy to increase health span. Primary, secondary, and tertiary prevention strategies related to endocrine function can delay and modify the impact of endocrine-related chronic diseases and promote healthy aging.

Keywords

Endocrine system Diabetes Thyroid Parathyroid Testosterone DHEA Estrogen Growth hormone 

References

  1. 1.
    Veldhuis JD. Changes in pituitary function with ageing and implications for patient care. Nat Rev Endocrinol. 2013;9(4):205–15.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    American Diabetes Association. 11. Older adults. Diabetes Care. 2017;40(Suppl 1):S99–S104.CrossRefGoogle Scholar
  3. 3.
    Boyle JP, Thompson TJ, Gregg EW, Barker LE, Williamson DF. Projection of the year 2050 burden of diabetes in the US adult population: dynamic modeling of incidence, mortality, and prediabetes prevalence. Popul Health Metr. 2010;8:29.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Barzilai N, Huffman DM, Muzumdar RH, Bartke A. The critical role of metabolic pathways in aging. Diabetes. 2012;61(6):1315–22.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Chatterjee S, Peters SA, Woodward M, Mejia Arango S, Batty GD, Beckett N, et al. Type 2 diabetes as a risk factor for dementia in women compared with men: a pooled analysis of 2.3 million people comprising more than 100,000 cases of dementia. Diabetes Care. 2016;39(2):300–7.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Ma RC. Genetics of cardiovascular and renal complications in diabetes. J Diabetes Investig. 2016;7(2):139–54.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Emerging Risk Factors Collaboration, Sarwar N, Gao P, Seshasai SR, Gobin R, Kaptoge S, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010;375(9733):2215–22.CrossRefGoogle Scholar
  8. 8.
    Kim CH, Kim HK, Kim EH, Bae SJ, Park JY. Association between changes in body composition and risk of developing type 2 diabetes in Koreans. Diabet Med. 2014;31(11):1393–8.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Sepe A, Tchkonia T, Thomou T, Zamboni M, Kirkland JL. Aging and regional differences in fat cell progenitors – a mini-review. Gerontology. 2011;57(1):66–75.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Fink RI, Kolterman OG, Griffin J, Olefsky JM. Mechanisms of insulin resistance in aging. J Clin Invest. 1983;71(6):1523–35.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Ford ES, Giles WH, Dietz WH. Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey. JAMA. 2002;287(3):356–9.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Barzilai N, Ferrucci L. Insulin resistance and aging: a cause or a protective response? J Gerontol A Biol Sci Med Sci. 2012;67(12):1329–31.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Hoehn KL, Salmon AB, Hohnen-Behrens C, Turner N, Hoy AJ, Maghzal GJ, et al. Insulin resistance is a cellular antioxidant defense mechanism. Proc Natl Acad Sci U S A. 2009;106(42):17787–92.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Tatar M, Bartke A, Antebi A. The endocrine regulation of aging by insulin-like signals. Science. 2003;299(5611):1346–51.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Paolisso G, Gambardella A, Ammendola S, D’Amore A, Balbi V, Varricchio M, et al. Glucose tolerance and insulin action in healthy centenarians. Am J Physiol. 1996;270(5 Pt 1):E890–4.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Paolisso G, Tagliamonte MR, Rizzo MR, Giugliano D. Advancing age and insulin resistance: new facts about an ancient history. Eur J Clin Invest. 1999;29(9):758–69.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Chang AM, Halter JB. Aging and insulin secretion. Am J Physiol Endocrinol Metab. 2003;284(1):E7–12.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Neeland IJ, Turer AT, Ayers CR, Powell-Wiley TM, Vega GL, Farzaneh-Far R, et al. Dysfunctional adiposity and the risk of prediabetes and type 2 diabetes in obese adults. JAMA. 2012;308(11):1150–9.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Chae YK, Arya A, Malecek MK, Shin DS, Carneiro B, Chandra S, et al. Repurposing metformin for cancer treatment: current clinical studies. Oncotarget. 2016;7(26):40767–80.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Tanaka H, Seals DR. Endurance exercise performance in Masters athletes: age-associated changes and underlying physiological mechanisms. J Physiol. 2008;586(1):55–63.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Booth FW, Laye MJ, Roberts MD. Lifetime sedentary living accelerates some aspects of secondary aging. J Appl Physiol (1985). 2011;111(5):1497–504.CrossRefGoogle Scholar
  22. 22.
    Vogel T, Brechat PH, Lepretre PM, Kaltenbach G, Berthel M, Lonsdorfer J. Health benefits of physical activity in older patients: a review. Int J Clin Pract. 2009;63(2):303–20.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Paterson DH, Warburton DE. Physical activity and functional limitations in older adults: a systematic review related to Canada’s Physical Activity Guidelines. Int J Behav Nutr Phys Act. 2010;7:38.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    The Diabetes Prevention Program. Design and methods for a clinical trial in the prevention of type 2 diabetes. Diabetes Care. 1999;22(4):623–34.CrossRefGoogle Scholar
  25. 25.
    Mercken EM, Carboneau BA, Krzysik-Walker SM, de Cabo R. Of mice and men: the benefits of caloric restriction, exercise, and mimetics. Ageing Res Rev. 2012;11(3):390–8.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    McCay CM, Crowell MF, Maynard LA. The effect of retarded growth upon the length of life span and upon the ultimate body size. 1935. Nutrition. 1989;5(3):155–71; discussion 72.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Lane MA, Roth GS, Ingram DK. Caloric restriction mimetics: a novel approach for biogerontology. Methods Mol Biol. 2007;371:143–9.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell. 2006;127(6):1109–22.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Hubbard BP, Sinclair DA. Small molecule SIRT1 activators for the treatment of aging and age-related diseases. Trends Pharmacol Sci. 2014;35(3):146–54.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Anisimov VN, Semenchenko AV, Yashin AI. Insulin and longevity: antidiabetic biguanides as geroprotectors. Biogerontology. 2003;4(5):297–307.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    De Souza A, Khawaja KI, Masud F, Saif MW. Metformin and pancreatic cancer: is there a role? Cancer Chemother Pharmacol. 2016;77(2):235–42.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Yaffe K, Falvey C, Hamilton N, Schwartz AV, Simonsick EM, Satterfield S, et al. Diabetes, glucose control, and 9-year cognitive decline among older adults without dementia. Arch Neurol. 2012;69(9):1170–5.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Launer LJ, Miller ME, Williamson JD, Lazar RM, Gerstein HC, Murray AM, et al. Effects of intensive glucose lowering on brain structure and function in people with type 2 diabetes (ACCORD MIND): a randomised open-label substudy. Lancet Neurol. 2011;10(11):969–77.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Beckett NS, Peters R, Fletcher AE, Staessen JA, Liu L, Dumitrascu D, et al. Treatment of hypertension in patients 80 years of age or older. N Engl J Med. 2008;358(18):1887–98.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Standards of Medical Care in Diabetes-2017: summary of revisions. Diabetes Care. 2017;40(Suppl 1):S4, S5.Google Scholar
  36. 36.
    Inzucchi SE, Lipska KJ, Mayo H, Bailey CJ, McGuire DK. Metformin in patients with type 2 diabetes and kidney disease: a systematic review. JAMA. 2014;312(24):2668–75.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Zannad F, Cannon CP, Cushman WC, Bakris GL, Menon V, Perez AT, et al. Heart failure and mortality outcomes in patients with type 2 diabetes taking alogliptin versus placebo in EXAMINE: a multicentre, randomised, double-blind trial. Lancet. 2015;385(9982):2067–76.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    McGuire DK, Van de Werf F, Armstrong PW, Standl E, Koglin J, Green JB, et al. Association between Sitagliptin use and heart failure hospitalization and related outcomes in type 2 diabetes mellitus: secondary analysis of a randomized clinical trial. JAMA Cardiol. 2016;1(2):126–35.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JF, Nauck MA, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375(4):311–22.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Fralick M, Schneeweiss S, Patorno E. Risk of diabetic ketoacidosis after initiation of an SGLT2 inhibitor. N Engl J Med. 2017;376(23):2300–2.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–28.CrossRefGoogle Scholar
  42. 42.
    Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377(7):644–57.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, Nauck M, et al. Management of hyperglycaemia in type 2 diabetes: a patient-centered approach. Position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia. 2012;55(6):1577–96.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007;356(24):2457–71.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Aubert RE, Herrera V, Chen W, Haffner SM, Pendergrass M. Rosiglitazone and pioglitazone increase fracture risk in women and men with type 2 diabetes. Diabetes Obes Metab. 2010;12(8):716–21.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;352(9131):854–65.Google Scholar
  47. 47.
    American Geriatrics Society Beers Criteria Update Expert Panel. American Geriatrics Society updated beers criteria for potentially inappropriate medication use in older adults. J Am Geriatr Soc. 2012;60(4):616–31.CrossRefGoogle Scholar
  48. 48.
    Hollowell JG, Staehling NW, Flanders WD, Hannon WH, Gunter EW, Spencer CA, et al. Serum TSH, T(4), and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J Clin Endocrinol Metab. 2002;87(2):489–99.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Vadiveloo T, Donnan PT, Murphy MJ, Leese GP. Age- and gender-specific TSH reference intervals in people with no obvious thyroid disease in Tayside, Scotland: the Thyroid Epidemiology, Audit, and Research Study (TEARS). J Clin Endocrinol Metab. 2013;98(3):1147–53.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    O’Leary PC, Feddema PH, Michelangeli VP, Leedman PJ, Chew GT, Knuiman M, et al. Investigations of thyroid hormones and antibodies based on a community health survey: the Busselton thyroid study. Clin Endocrinol (Oxf). 2006;64(1):97–104.CrossRefGoogle Scholar
  51. 51.
    Surks MI, Boucai L. Age- and race-based serum thyrotropin reference limits. J Clin Endocrinol Metab. 2010;95(2):496–502.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Boucai L, Hollowell JG, Surks MI. An approach for development of age-, gender-, and ethnicity-specific thyrotropin reference limits. Thyroid. 2011;21(1):5–11.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Mariotti S, Franceschi C, Cossarizza A, Pinchera A. The aging thyroid. Endocr Rev. 1995;16(6):686–715.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Waring AC, Arnold AM, Newman AB, Buzkova P, Hirsch C, Cappola AR. Longitudinal changes in thyroid function in the oldest old and survival: the cardiovascular health study all-stars study. J Clin Endocrinol Metab. 2012;97(11):3944–50.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Bremner AP, Feddema P, Leedman PJ, Brown SJ, Beilby JP, Lim EM, et al. Age-related changes in thyroid function: a longitudinal study of a community-based cohort. J Clin Endocrinol Metab. 2012;97(5):1554–62.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Silvestri E, Lombardi A, de Lange P, Schiavo L, Lanni A, Goglia F, et al. Age-related changes in renal and hepatic cellular mechanisms associated with variations in rat serum thyroid hormone levels. Am J Physiol Endocrinol Metab. 2008;294(6):E1160–8.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Surks MI, Sievert R. Drugs and thyroid function. N Engl J Med. 1995;333(25):1688–94.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Peeters RP. Thyroid hormones and aging. Hormones (Athens). 2008;7(1):28–35.CrossRefGoogle Scholar
  59. 59.
    Bensenor IM, Goulart AC, Lotufo PA, Menezes PR, Scazufca M. Prevalence of thyroid disorders among older people: results from the Sao Paulo Ageing & Health Study. Cad Saude Publica. 2011;27(1):155–61.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Parle J, Roberts L, Wilson S, Pattison H, Roalfe A, Haque MS, et al. A randomized controlled trial of the effect of thyroxine replacement on cognitive function in community-living elderly subjects with subclinical hypothyroidism: the Birmingham Elderly Thyroid study. J Clin Endocrinol Metab. 2010;95(8):3623–32.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Rugge JB, Bougatsos C, Chou R. Screening for and treatment of thyroid dysfunction: an evidence review for the US Preventive Services Task Force. U.S. Preventive Services Task Force Evidence Syntheses, formerly Systematic Evidence Reviews. Rockville (MD)2014.Google Scholar
  62. 62.
    Garber JR, Cobin RH, Gharib H, Hennessey JV, Klein I, Mechanick JI, et al. Clinical practice guidelines for hypothyroidism in adults: cosponsored by the American Association of Clinical Endocrinologists and the American Thyroid Association. Endocr Pract. 2012;18(6):988–1028.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Ashizawa K, Imaizumi M, Usa T, Tominaga T, Sera N, Hida A, et al. Metabolic cardiovascular disease risk factors and their clustering in subclinical hypothyroidism. Clin Endocrinol (Oxf). 2010;72(5):689–95.CrossRefGoogle Scholar
  64. 64.
    By the American Geriatrics Society Beers Criteria Update Expert Panel. American Geriatrics Society 2015 updated beers criteria for potentially inappropriate medication use in older adults. J Am Geriatr Soc. 2015;63(11):2227–46.CrossRefGoogle Scholar
  65. 65.
    Petersen RC, Stevens JC, Ganguli M, Tangalos EG, Cummings JL, DeKosky ST. Practice parameter: early detection of dementia: mild cognitive impairment (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2001;56(9):1133–42.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Tunbridge WM, Evered DC, Hall R, Appleton D, Brewis M, Clark F, et al. The spectrum of thyroid disease in a community: the Whickham survey. Clin Endocrinol (Oxf). 1977;7(6):481–93.CrossRefGoogle Scholar
  67. 67.
    Diez JJ. Hypothyroidism in patients older than 55 years: an analysis of the etiology and assessment of the effectiveness of therapy. J Gerontol A Biol Sci Med Sci. 2002;57(5):M315–20.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Laurberg P, Pedersen KM, Vestergaard H, Sigurdsson G. High incidence of multinodular toxic goitre in the elderly population in a low iodine intake area vs. high incidence of Graves’ disease in the young in a high iodine intake area: comparative surveys of thyrotoxicosis epidemiology in East-Jutland Denmark and Iceland. J Intern Med. 1991;229(5):415–20.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Gammage MD, Parle JV, Holder RL, Roberts LM, Hobbs FD, Wilson S, et al. Association between serum free thyroxine concentration and atrial fibrillation. Arch Intern Med. 2007;167(9):928–34.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Raffaelli M, Bellantone R, Princi P, De Crea C, Rossi ED, Fadda G, et al. Surgical treatment of thyroid diseases in elderly patients. Am J Surg. 2010;200(4):467–72.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Vadiveloo T, Donnan PT, Cochrane L, Leese GP. The Thyroid Epidemiology, Audit, and Research Study (TEARS): the natural history of endogenous subclinical hyperthyroidism. J Clin Endocrinol Metab. 2011;96(1):E1–8.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Pearce SH, Razvi S, Yadegarfar ME, Martin-Ruiz C, Kingston A, Collerton J, et al. Serum thyroid function, mortality and disability in advanced old age: the Newcastle 85+ study. J Clin Endocrinol Metab. 2016;101(11):4385–94.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Gussekloo J, van Exel E, de Craen AJ, Meinders AE, Frolich M, Westendorp RG. Thyroid status, disability and cognitive function, and survival in old age. JAMA. 2004;292(21):2591–9.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Atzmon G, Barzilai N, Hollowell JG, Surks MI, Gabriely I. Extreme longevity is associated with increased serum thyrotropin. J Clin Endocrinol Metab. 2009;94(4):1251–4.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Gharib H, Papini E, Garber JR, Duick DS, Harrell RM, Hegedus L, et al. American Association of Clinical Endocrinologists, American College of Endocrinology, and Associazione Medici Endocrinologi medical guidelines for clinical practice for the diagnosis and management of thyroid nodules – 2016 update. Endocr Pract. 2016;22(5):622–39.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Kilfoy BA, Devesa SS, Ward MH, Zhang Y, Rosenberg PS, Holford TR, et al. Gender is an age-specific effect modifier for papillary cancers of the thyroid gland. Cancer Epidemiol Biomarkers Prev. 2009;18(4):1092–100.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Park HS, Roman SA, Sosa JA. Treatment patterns of aging Americans with differentiated thyroid cancer. Cancer. 2010;116(1):20–30.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Pepe J, Romagnoli E, Nofroni I, Pacitti MT, De Geronimo S, Letizia C, et al. Vitamin D status as the major factor determining the circulating levels of parathyroid hormone: a study in normal subjects. Osteoporos Int. 2005;16(7):805–12.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Serdar MA, Batu Can B, Kilercik M, Durer ZA, Aksungar FB, Serteser M, et al. Analysis of changes in parathyroid hormone and 25 (OH) vitamin D levels with respect to age, gender and season: a data mining study. J Med Biochem. 2017;36(1):73–83.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Need AG, O’Loughlin PD, Morris HA, Horowitz M, Nordin BE. The effects of age and other variables on serum parathyroid hormone in postmenopausal women attending an osteoporosis center. J Clin Endocrinol Metab. 2004;89(4):1646–9.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Bjorkman M, Sorva A, Tilvis R. Parathyroid hormone as a mortality predictor in frail aged inpatients. Gerontology. 2009;55(6):601–6.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Sambrook PN, Chen JS, March LM, Cameron ID, Cumming RG, Lord SR, et al. Serum parathyroid hormone is associated with increased mortality independent of 25-hydroxy vitamin d status, bone mass, and renal function in the frail and very old: a cohort study. J Clin Endocrinol Metab. 2004;89(11):5477–81.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Buchebner D, Malmgren L, Christensson A, McGuigan F, Gerdhem P, Ridderstrale M, et al. Longitudinal assessment of PTH in community-dwelling older women-elevations are not associated with mortality. J Endocr Soc. 2017;1(6):615–24.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    El Hilali J, de Koning EJ, van Ballegooijen AJ, Lips P, Sohl E, van Marwijk HWJ, et al. Vitamin D, PTH and the risk of overall and disease-specific mortality: results of the longitudinal aging study Amsterdam. J Steroid Biochem Mol Biol. 2016;164:386–94.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Bansal N, Zelnick L, Robinson-Cohen C, Hoofnagle AN, Ix JH, Lima JA, et al. Serum parathyroid hormone and 25-hydroxyvitamin D concentrations and risk of incident heart failure: the multi-ethnic study of atherosclerosis. J Am Heart Assoc. 2014;3(6):e001278.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Melton LJ 3rd. Epidemiology of primary hyperparathyroidism. J Bone Miner Res. 1991;6(Suppl 2):S25–30; discussion S1–2.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Melton LJ 3rd, Atkinson EJ, O’Fallon WM, Heath H 3rd. Risk of age-related fractures in patients with primary hyperparathyroidism. Arch Intern Med. 1992;152(11):2269–73.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Khosla S, Melton LJ 3rd, Wermers RA, Crowson CS, O’Fallon W, Riggs B. Primary hyperparathyroidism and the risk of fracture: a population-based study. J Bone Miner Res. 1999;14(10):1700–7.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Prete C, Foppiani L, Trasciatti S, Senesi B, Veneziano M, Barone A, et al. Primary hyperparathyroidism and neuropsychiatric alterations in a nonagenarian woman. Aging Clin Exp Res. 2005;17(1):67–70.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Paslakis G, Gilles M, Frankhauser P, Lanczik O, Deuschle M, Frolich L, et al. Two cases of primary hyperparathyroidism with depressive and cognitive symptoms. J Nutr Health Aging. 2010;14(9):798–9.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Fui SL, Bonnichon P, Bonni N, Delbot T, Andre JP, Pion-Graff J, et al. Hyperparathyroidism in octogenarians: a plea for ambulatory minimally invasive surgery under local anesthesia. Ann Endocrinol (Paris). 2016;77(5):600–5.CrossRefGoogle Scholar
  92. 92.
    Sonntag WE, Steger RW, Forman LJ, Meites J. Decreased pulsatile release of growth hormone in old male rats. Endocrinology. 1980;107(6):1875–9.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Toogood AA, O’Neill PA, Shalet SM. Beyond the somatopause: growth hormone deficiency in adults over the age of 60 years. J Clin Endocrinol Metab. 1996;81(2):460–5.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Weltman A, Weltman JY, Hartman ML, Abbott RD, Rogol AD, Evans WS, et al. Relationship between age, percentage body fat, fitness, and 24-hour growth hormone release in healthy young adults: effects of gender. J Clin Endocrinol Metab. 1994;78(3):543–8.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Veldhuis JD, Roelfsema F, Keenan DM, Pincus S. Gender, age, body mass index, and IGF-I individually and jointly determine distinct GH dynamics: analyses in one hundred healthy adults. J Clin Endocrinol Metab. 2011;96(1):115–21.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Veldhuis JD, Iranmanesh A, Weltman A. Elements in the pathophysiology of diminished growth hormone (GH) secretion in aging humans. Endocrine. 1997;7(1):41–8.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Besson A, Salemi S, Gallati S, Jenal A, Horn R, Mullis PS, et al. Reduced longevity in untreated patients with isolated growth hormone deficiency. J Clin Endocrinol Metab. 2003;88(8):3664–7.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Reed ML, Merriam GR, Kargi AY. Adult growth hormone deficiency - benefits, side effects, and risks of growth hormone replacement. Front Endocrinol (Lausanne). 2013;4:64.CrossRefGoogle Scholar
  99. 99.
    Brill KT, Weltman AL, Gentili A, Patrie JT, Fryburg DA, Hanks JB, et al. Single and combined effects of growth hormone and testosterone administration on measures of body composition, physical performance, mood, sexual function, bone turnover, and muscle gene expression in healthy older men. J Clin Endocrinol Metab. 2002;87(12):5649–57.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Blackman MR, Sorkin JD, Munzer T, Bellantoni MF, Busby-Whitehead J, Stevens TE, et al. Growth hormone and sex steroid administration in healthy aged women and men: a randomized controlled trial. JAMA. 2002;288(18):2282–92.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Borst SE. Interventions for sarcopenia and muscle weakness in older people. Age Ageing. 2004;33(6):548–55.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Liu H, Bravata DM, Olkin I, Nayak S, Roberts B, Garber AM, et al. Systematic review: the safety and efficacy of growth hormone in the healthy elderly. Ann Intern Med. 2007;146(2):104–15.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Baker LD, Barsness SM, Borson S, Merriam GR, Friedman SD, Craft S, et al. Effects of growth hormone-releasing hormone on cognitive function in adults with mild cognitive impairment and healthy older adults: results of a controlled trial. Arch Neurol. 2012;69(11):1420–9.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    White HK, Petrie CD, Landschulz W, MacLean D, Taylor A, Lyles K, et al. Effects of an oral growth hormone secretagogue in older adults. J Clin Endocrinol Metab. 2009;94(4):1198–206.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Berryman DE, Christiansen JS, Johannsson G, Thorner MO, Kopchick JJ. Role of the GH/IGF-1 axis in lifespan and healthspan: lessons from animal models. Growth Horm IGF Res. 2008;18(6):455–71.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Harman SM, Metter EJ, Tobin JD, Pearson J, Blackman MR. Baltimore Longitudinal Study of A. Longitudinal effects of aging on serum total and free testosterone levels in healthy men. Baltimore Longitudinal Study of Aging. J Clin Endocrinol Metab. 2001;86(2):724–31.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Bhasin S, Brito JP, Cunningham GR, Hayes FJ, Hodis HN, Matsumoto AM, et al. Testosterone therapy in men with hypogonadism: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2018;103:1715.CrossRefGoogle Scholar
  108. 108.
    Basaria S, Coviello AD, Travison TG, Storer TW, Farwell WR, Jette AM, et al. Adverse events associated with testosterone administration. N Engl J Med. 2010;363(2):109–22.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Vigen R, O’Donnell CI, Baron AE, Grunwald GK, Maddox TM, Bradley SM, et al. Association of testosterone therapy with mortality, myocardial infarction, and stroke in men with low testosterone levels. JAMA. 2013;310(17):1829–36.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Finkle WD, Greenland S, Ridgeway GK, Adams JL, Frasco MA, Cook MB, et al. Increased risk of non-fatal myocardial infarction following testosterone therapy prescription in men. PLoS One. 2014;9(1):e85805.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Basaria S, Harman SM, Travison TG, Hodis H, Tsitouras P, Budoff M, et al. Effects of testosterone administration for 3 years on subclinical atherosclerosis progression in older men with low or low-Normal testosterone levels: a randomized clinical trial. JAMA. 2015;314(6):570–81.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Toma M, McAlister FA, Coglianese EE, Vidi V, Vasaiwala S, Bakal JA, et al. Testosterone supplementation in heart failure: a meta-analysis. Circ Heart Fail. 2012;5(3):315–21.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Snyder PJ, Bhasin S, Cunningham GR, Matsumoto AM, Stephens-Shields AJ, Cauley JA, et al. Lessons from the testosterone trials. Endocr Rev. 2018;39:369–86.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Budoff MJ, Ellenberg SS, Lewis CE, Mohler ER 3rd, Wenger NK, Bhasin S, et al. Testosterone treatment and coronary artery plaque volume in older men with low testosterone. JAMA. 2017;317(7):708–16.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    The NAMS 2017 Hormone Therapy Position Statement Advisory Panel. The 2017 hormone therapy position statement of The North American Menopause Society. Menopause. 2017;24(7):728–53.CrossRefGoogle Scholar
  116. 116.
    ACOG Practice Bulletin No. 141: management of menopausal symptoms. Obstet Gynecol. 2014;123(1):202–16.Google Scholar
  117. 117.
    ACOG Committee Opinion No. 565: hormone therapy and heart disease. Obstet Gynecol. 2013;121(6):1407–10.Google Scholar
  118. 118.
    Ohlsson C, Vandenput L, Tivesten A. DHEA and mortality: what is the nature of the association? J Steroid Biochem Mol Biol. 2015;145:248–53.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Kenny AM, Boxer RS, Kleppinger A, Brindisi J, Feinn R, Burleson JA. Dehydroepiandrosterone combined with exercise improves muscle strength and physical function in frail older women. J Am Geriatr Soc. 2010;58(9):1707–14.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Jankowski CM, Gozansky WS, Schwartz RS, Dahl DJ, Kittelson JM, Scott SM, et al. Effects of dehydroepiandrosterone replacement therapy on bone mineral density in older adults: a randomized, controlled trial. J Clin Endocrinol Metab. 2006;91(8):2986–93.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Jankowski CM, Gozansky WS, Kittelson JM, Van Pelt RE, Schwartz RS, Kohrt WM. Increases in bone mineral density in response to oral dehydroepiandrosterone replacement in older adults appear to be mediated by serum estrogens. J Clin Endocrinol Metab. 2008;93(12):4767–73.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Division of Endocrinology and Metabolism, Department of MedicineUniversity of Connecticut School of MedicineFarmingtonUSA

Personalised recommendations