Advertisement

Development of Portable Dynamic Ion Flux Detecting Equipment

  • Peichen Hou
  • Cheng Wang
  • Xiaodong Wang
  • Aixue Li
  • Peng Song
  • Bin Luo
  • Ye Hu
  • Liping ChenEmail author
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 546)

Abstract

Non-destructive testing of plant organs, tissues, and cells has important implications in studying the immediate physiological status of plants. The portable dynamic ion flux test equipment (PDIFTE) was developed based on Fick’s first law of diffusion and the Nernst equation to achieve the ion flux measurement in pmol cm−2s−1. This equipment integrates micro-imaging, micro-signal processing, automation and control, and biosensor technologies with the original signal acquisition and conditioning module, the motion control module, the macro 3D automatically control platform, micro digital imaging system, electrostatic shielding coating, ion-selective microelectrode, and other components. PDIFTE can detect H+, K+, Na+, Mg2+, Ca2+, Cd2+, Cl, \( {\text{NO}}_{3}^{ - } \), and \( {\text{NH}}_{4}^{ + } \). This device can be used in the physiological mechanism research of salt-resistant, drought-resistant, cold-tolerant, heavy metal-resistant, and disease-resistant plants. It can also be used in the research on plant nutrition, ion channel-related gene function, and crop resistant breeding screening.

Keywords

Portable dynamic ion flux test equipment (PDIFTE) Ion-selective microelectrodes Liquid ion exchanger (LIX) Ion flux 

Notes

Acknowledgments

This research was supported by the Postdoctoral Funding from Beijing Academy of Agriculture, Scientific and Technological Innovation Team of Beijing Academy of Agricultural and Forestry Sciences (JNKYT201604, and Fundings from the National Natural Science Foundation of China (Grant No.61571443).

References

  1. 1.
    Welz, B., Sperling, M.: Atomic Absorption Spectrometry. Wiley, Hoboken (2008)Google Scholar
  2. 2.
    Denk, W., Strickler, J.H., Webb, W.W.: Two-photon laser scanning fluorescence microscopy. Science 248(4951), 73–76 (1990)CrossRefGoogle Scholar
  3. 3.
    Li, J., Long, Y., Qi, G.N., Xu, Z.J., Wu, W.H., Wang, Y.: The Os-AKT1 channel is critical for K+ uptake in rice roots and is modulated by the rice CBL1-CIPK23 Complex. Plant Cell 26(8), 3387–3402 (2014)CrossRefGoogle Scholar
  4. 4.
    Jaffe, L.F., Nuccitelli, R.: An ultrasensitive vibrating probe for measuring steady extracellular currents. J. Cell Biol. 63(2), 614–628 (1974)CrossRefGoogle Scholar
  5. 5.
    Newman, I.A., Kochian, L.V., Grusak, M.A., Lucas, W.J.: Fluxes of H+ and K+ in corn roots characterization and stoichiometries using ion-selective microelectrodes. Plant Physiol. 84(4), 1177–1184 (1987)CrossRefGoogle Scholar
  6. 6.
    Smith, P.J.: Non-invasive ion probes—Tools for measuring transmembrane ion flux. Nature 378(6557), 645 (1995)CrossRefGoogle Scholar
  7. 7.
    Franklin-Tong, V.E., Holdaway-Clarke, T.L., Straatman, K.R., Kunkel, J.G., Hepler, P.K.: Involvement of extracellular calcium influx in the self-incompatibility response of Papaver rhoeas. Plant J. 29(3), 333–345 (2002)CrossRefGoogle Scholar
  8. 8.
    Newman, I.A.: Ion transport in roots: measurement of fluxes using ion-selective microelectrodes to characterize transporter function. Plant Cell Environ. 24(1), 1–14 (2001)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Davies, E.: Electrical signals in plants: facts and hypotheses. In: Volkov, A.G. (ed.) Plant Electrophysiology, pp. 407–422. Springer, Heidelberg (2006).  https://doi.org/10.1007/978-3-540-37843-3_17CrossRefGoogle Scholar
  10. 10.
    Tang, B., Yin, C., Wang, Y., Sun, Y., Liu, Q.: Positive effects of night warming on physiology of coniferous trees in late growing season: leaf and root. Acta Oecol. 73, 21–30 (2016)CrossRefGoogle Scholar
  11. 11.
    Xu, W., et al.: Abscisic acid accumulation modulates auxin transport in the root tip to enhance proton secretion for maintaining root growth under moderate water stress. New Phytol. 197(1), 139–150 (2013)CrossRefGoogle Scholar
  12. 12.
    Sun, J., et al.: NaCl-induced alternations of cellular and tissue ion fluxes in roots of salt-resistant and salt-sensitive poplar species. Plant Physiol. 149(2), 1141–1153 (2009)CrossRefGoogle Scholar
  13. 13.
    Zhang, Y., et al.: Paxillus involutus-facilitated Cd2+ influx through plasma membrane Ca2+-permeable channels is stimulated by H2O2 and H+-ATPase in ectomycorrhizal populus × canescens under cadmium stress. Front. Plant Sci. 7, 1975 (2016)Google Scholar
  14. 14.
    Wang, F., et al.: Different responses of low grain-Cd-accumulating and high grain-Cd-accumulating rice cultivars to Cd stress. Plant Physiol. Biochem. 96, 261–269 (2015)CrossRefGoogle Scholar
  15. 15.
    Han, Y.L., et al.: Nitrogen use efficiency is mediated by vacuolar nitrate sequestration capacity in roots of Brassica napus. Plant Physiol. 170(3), 1684–1698 (2016)Google Scholar
  16. 16.
    Nemchinov, L.G., Shabala, L., Shabala, S.: Calcium efflux as a component of the hypersensitive response of Nicotiana benthamiana to Pseudomonas syringae. Plant Cell Physiol. 49(1), 40–46 (2008)CrossRefGoogle Scholar
  17. 17.
    Shabala, S., et al.: Plasma membrane Ca2+ transporters mediate virus-induced acquired resistance to oxidative stress. Plant Cell Environ. 34(3), 406–417 (2011)CrossRefGoogle Scholar
  18. 18.
    Tang, W., et al.: The calcium sensor GhCaM7 promotes cotton fiber elongation by modulating reactive oxygen species (ROS) production. New Phytol. 202(2), 509–520 (2014)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2019

Authors and Affiliations

  • Peichen Hou
    • 1
    • 2
  • Cheng Wang
    • 1
    • 2
  • Xiaodong Wang
    • 1
  • Aixue Li
    • 1
  • Peng Song
    • 1
  • Bin Luo
    • 1
  • Ye Hu
    • 1
  • Liping Chen
    • 1
    Email author
  1. 1.Beijing Research Center of Intelligent Equipment for AgricultureBeijing Academy of Agriculture and Forestry SciencesBeijingChina
  2. 2.Beijing Research Center for Information Technology in AgricultureBeijing Academy of Agriculture and Forestry SciencesBeijingChina

Personalised recommendations