Development and Application of Hyperspectral Remote Sensing

  • Huimin Xing
  • Haikuan FengEmail author
  • Jingying Fu
  • Xingang Xu
  • Guijun Yang
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 546)


Since the early 1960s, multispectral imagery has been served as the data source for earth observational remote sensing (RS) in the last thirty years; the advancement of sensor technology had made it accessible to colleting hundreds continues spectral bands-hyperspectral RS. Hyperspectral RS (HRS) is a new technique for observing the earth, which is different from the multispectral RS because of several hundreds of contiguous spectral bands. With a long history of development, HRS is widely used currently. This review details the development of HRS, data processing, characteristics, imaging mode of hyperspectral sensors and its applications, such as detecting and identifying the surface, monitoring agriculture and forest status, environmental studies, and military surveillance, etc.


Hyperspectral remote sensing Airborne Space borne Hyperspectral sensors Plant ecology surveying 



This study was backed up by the National Natural Science Foundation of China (Grant no. 41601346, 41571416), Beijing Academy of agricultural and Forestry Sciences Innovation Capacity Construction Specific Projects (Grant no. KJCX20170423, KJCX20150409) and Beijing Natural Science Foundation of China (Grant no. 4152019).


  1. 1.
    Goetz, A.F.H., Vane, G., Solomon, J.E., Rock, B.N.: Imaging spectrometry for earth remote sensing. Science 7(228), 1147–1153 (1985)CrossRefGoogle Scholar
  2. 2.
    Lu, R., Park, B.: Hyperspectral and multispectral imaging for food quality and safety. Sens. Instrum. Food Qual. Saf. 2(3), 131–132 (2008)CrossRefGoogle Scholar
  3. 3.
    Gowen, A.A., O’donnell, C.P., Taghizadeh, M., et al.: Hyperspectral imaging for the investigation of quality deterioration in sliced mushrooms (Agaricus Bisporus) during storage. Sens. Instrum. Food Qual. Saf. 2(3), 133–143 (2008)CrossRefGoogle Scholar
  4. 4.
    Goetz, A.F.H.: Three decades of hyperspectral remote sensing of the earth: a personal view. Remote Sens. Environ. 113, S5–S16 (2009)CrossRefGoogle Scholar
  5. 5.
    Haboudane, D., Miller, J.R., Pattey, E., et al.: Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture. Remote Sens. Environ. 90(3), 337–352 (2004)CrossRefGoogle Scholar
  6. 6.
    Galvao, L., Formaggio, A., Tisot, D.: Discrimination of sugarcane varieties in Southeastern Brazil with EO-1 hyperion data. Remote Sens. Environ. 94(4), 523–534 (2005)CrossRefGoogle Scholar
  7. 7.
    Tiwari, K.C., Arora, M.K., Singh, D.: An assessment of independent component analysis for detection of military targets from hyperspectral images. Int. J. Appl. Earth Obs. Geoinf. 13(5), 730–740 (2011)CrossRefGoogle Scholar
  8. 8.
    Harris, J.R., Rogge, D., Hitchcock, R., et al.: Mapping lithology in Canada’s Arctic: application of hyperspectral data using the minimum noise fraction transformation and matched filtering. Can. J. Earth Sci. 42(12), 2173–2193 (2005)CrossRefGoogle Scholar
  9. 9.
    Kokaly, R.F., Rockwell, B.W., Haire, S.L., et al.: Characterization of post-fire surface cover, soils, and burn severity at the Cerro Grande Fire, New Mexico, using hyperspectral and multispectral remote sensing. Remote Sens. Environ. 106(3), 305–325 (2007)CrossRefGoogle Scholar
  10. 10.
    Alakian, A., Marion, R., Briottet, X.: Radiative modeling and characterization of aerosol plumes in hyperspectral imagery, pp. 3219–3224 (2007)Google Scholar
  11. 11.
    Kneubuehler, M., Koetz, B., Huber, S., et al.: Monitoring vegetation growth using multitemporal CHRIS/PROBA data. In: 2006 IEEE International Geoscience and Remote Sensing Symposium, vol. 1–8, pp. 2677–2680 (2006)Google Scholar
  12. 12.
    Dekker, A.G., Malthus, T.J., Wijnen, M.M., et al.: The effect of spectral bandwidth and positioning on the spectral signature analysis of inland waters. Remote Sens. Environ. 41(2–3), 211–225 (1992)CrossRefGoogle Scholar
  13. 13.
    Pengra, B., Johnston, C., Loveland, T.: Mapping an invasive plant, phragmites australis, in coastal wetlands using the EO-1 hyperion hyperspectral sensor. Remote Sens. Environ. 108(1), 74–81 (2007)CrossRefGoogle Scholar
  14. 14.
    Green, R.O., Eastwood, M.L., Sarture, C.M., et al.: Imaging spectroscopy and the airborne visible infrared imaging spectrometer (AVIRIS). Remote Sens. Environ. 65(3), 227–248 (1998)CrossRefGoogle Scholar
  15. 15.
    Zagolski, F., Pinel, V., Romier, J., et al.: Forest canopy chemistry with high spectral resolution remote sensing. Int. J. Remote Sens. 17(6), 1107–1128 (1996)CrossRefGoogle Scholar
  16. 16.
    Babey, S.K., Anger, C.D.: Compact airborne spectrographic imager (CASI) - a progress review. In: Imaging Spectrometry of the Terrestrial Environment, pp. 152–163(1993)Google Scholar
  17. 17.
    Cocks, T., Jenssen, R., Stewart, A., et al.: The HyMap (TM) airborne hyperspectral sensor: the system, calibration and performance. In: 1st Earsel Workshop on Imaging Spectroscopy, pp. 37–42 (1998)Google Scholar
  18. 18.
    Cutter, M.A., Lobb, D.R., Williams, T.L., et al.: Integration and testing of the compact high-resolution imaging spectrometer (CHRIS). Imaging Spectrom. 3753, 180–191 (1999)Google Scholar
  19. 19.
    Cutter, M., Lobb, D.: Design of the compact high-resolution imaging spectrometer (CHRIS), and future developments. In: Proceedings of the 5th International Conference on Space Optics, vol. 554, pp. 41–47 (2004)Google Scholar
  20. 20.
    Liu, Y.N., Xue, Y.Q., Wang, J.Y., et al.: Operational modular imaging spectrometer. J. Infrared Millim. Waves 21(1), 9–13 (2002)Google Scholar
  21. 21.
    Mao, Z.H., Chen, J.Y., He, X.Q.: Evaluation of CMODIS-measured radiance by a hyperspectral model. Int. J. Remote Sens. 31(19), 5179–5198 (2010)CrossRefGoogle Scholar
  22. 22.
    Yarbrough, S., Caudill, T., Kouba, E., et al.: MightySat II.1 hyperspectral imager: summary of on-orbit performance. In: Descour, M.R., Shen, S.S. (eds.) Imaging Spectrometry VII, pp. 186–197 (2001)Google Scholar
  23. 23.
    Tong, Q., Zhang, B., Zheng, L.: Hyperspectral Remote Sensing. Higher Education Press, Beijing (2006)Google Scholar
  24. 24.
    Abdellaoui, B., Merzouk, A., Aberkan, M., et al.: hydrological balance and siltation of the saboun dam (Morocco). Revue des Sciences de l’Eau. 15(4), 737–748 (2002)CrossRefGoogle Scholar
  25. 25.
    Su, H., Du, P.: Study on feature selection and extraction of hyperspectral data. Remote. Sens. Technol. Appl. 21(4), 288–293 (2006)Google Scholar
  26. 26.
    Zhang, L., Zhang, L.F.: Hyperspectral Remote Sensing. Wuhan University Press, Wuhan (2005)Google Scholar
  27. 27.
    Yang, G., Yu X., Feng, W., Liu, W., Chen, W., et al.: The development and application of hyperspectral RS Technology. Bull. Surv. Mapp. (10), 1–4 (2008)Google Scholar
  28. 28.
    Lu, W.: A research of feature extraction and classification techniques for target detection in hyperspectral image. Doctoral Dissertation (2005)Google Scholar
  29. 29.
    Tao, D.X., Jia, G.R., Yuan, Y., et al.: A digital sensor simulator of the pushbroom offner hyperspectral imaging spectrometer. Sensor 14(12), 23822–23842 (2014)CrossRefGoogle Scholar
  30. 30.
    Wang, J.N.: Performance analysis and development of airborne imaging spectrometer, new progress and development strategy of remote sensing. Science and Technology of China Press, Beijing (1996)Google Scholar
  31. 31.
    Liu, P., Lin, H., Sun, H., et al.: Dimensionality reduction method of hyperion EO-1 data. J. Cent. South Univ. For. Technol. 31(11), 34–38 (2011)Google Scholar
  32. 32.
    Wang, X., Xiao, P., Guo, J.: Research on dimensionality reduction technology of hyperspectral data. Bull. Soil Water Conserv. 26(6), 89–91 (2006)Google Scholar
  33. 33.
    Kruse, F.A., Lefkoff, A.B., Boardman, J.W., et al.: The spectral image-processing system (SIPS) - interactive visualization and analysis of imaging spectrometer data. Remote Sens. Environ. 44(2–3), 145–163 (1993)CrossRefGoogle Scholar
  34. 34.
    Ibraheem, I.: Comparative study of maximum likelihood and spectral angle mapper algorithms used for automated detection of melanoma. Skin Res. Technol. 21(1), 84–89 (2015)CrossRefGoogle Scholar
  35. 35.
    Tang, X., Pearlman, W.A.: Three-dimensional wavelet-based compression of hyperspectral images. In: Motta, G., Rizzo, F., Storer, J.A. (eds.) Hyperspectral Data Compression, pp. 273–308. Springer, Boston (2006). Scholar
  36. 36.
    Singh, C.B., Jayas, D.S., Paliwal, J., et al.: Identification of insect-damaged wheat kernels using short-wave near-infrared hyperspectral and digital colour imaging. Comput. Electron. Agric. 73(2), 118–125 (2010)CrossRefGoogle Scholar
  37. 37.
    Ye, X., Sakai, K., Manago, M., et al.: Prediction of citrus yield from airborne hyperspectral imagery. Precis. Agric. 8(3), 111–125 (2007)CrossRefGoogle Scholar
  38. 38.
    Strachan, I.B., Pattey, E., Boisvert, J.B., Cavalli, R.: Impact of nitrogen and environmental conditions on corn as detected by hyperspectral reflectance. Remote Sens. Environ. 80, 213–224 (2002)CrossRefGoogle Scholar
  39. 39.
    Flink, P., Lindell, L.T., Ostlund, C.: Statistical analysis of hyperspectral data from two swedish lakes. Sci. Total. Environ. 268, 155–169 (2001)CrossRefGoogle Scholar
  40. 40.
    Kunkel, B., Harms, J., Kummer, U., et al.: Observing Land from Space: Science, Customers and Technology, pp. 303–327. Kluwer Academic Publishers, Dordrecht (2000)CrossRefGoogle Scholar
  41. 41.
    Koppe, W., Li, F., Gnyp, M.L., et al.: Evaluating multispectral and hyperspectral satellite remote sensing data for estimating winter wheat growth parameters at regional scale in the North China plain. Photogramm. Fernerkund. Geoinf. (3), 171–182 (2010)CrossRefGoogle Scholar
  42. 42.
    Wu, C.Y., Han, X.Z., Niu, Z., et al.: An evaluation of EO-1 hyperspectral hyperion data for chlorophyll content and leaf area index estimation. Int. J. Remote Sens. 31(4), 1079–1086 (2010)CrossRefGoogle Scholar
  43. 43.
    Gomez, C., Viscarrarossel, R., Mcbratney, A.: Soil organic carbon prediction by hyperspectral remote sensing and field Vis-NIR spectroscopy: an australian case study. Geoderma 146(3–4), 403–411 (2008)CrossRefGoogle Scholar
  44. 44.
    Wang, J., Chen, Y.Q.: Mapping soil organic matter based on land degradation spectral response units using hyperion images. Int. J. Appl. Earth ObservatiCon Geoinf. 12, S171–S180 (2010)CrossRefGoogle Scholar
  45. 45.
    Mitri, G.H., Gitas, I.Z.: Mapping postfire vegetation recovery using EO-1 hyperion imagery. IEEE Trans. Geosci. Remote Sens. 48(3), 1613–1618 (2010)CrossRefGoogle Scholar
  46. 46.
    Ghiyamat, A., Shafri, H.Z.M.: A review on hyperspectral remote sensing for homogeneous and heterogeneous forest biodiversity assessment. Int. J. Remote Sens. 31(7), 1837–1856 (2010)CrossRefGoogle Scholar
  47. 47.
    Jensen, J.R., Gladden, J., Filippi, T., Pendergast, M.: Hyperspectral analysis of hazardous waste sites on the savannah river site, 55 (2003)Google Scholar
  48. 48.
    Bassani, C., Cavalli, R.M., Pignatti, S.: Aerosol optical retrieval and surface reflectance from airborne remote sensing data over land. Sensors 10(7), 6421–6438 (2010)CrossRefGoogle Scholar
  49. 49.
    Gao, B.-C., Montes, M.J., Davis, C.O., et al.: Atmospheric correction algorithms for hyperspectral remote sensing data of land and ocean. Remote Sens. Environ. 113, S17–S24 (2009)CrossRefGoogle Scholar
  50. 50.
    Vermote, E.F., Tanre, D., Deuze, J.L., et al.: Second simulation of the satellite signal in the solar spectrum, 6S: an overview. IEEE Trans. Geosci. Remote Sens. 35(3), 675–686 (1997)CrossRefGoogle Scholar
  51. 51.
    Gao, B.C., Montes, M.J., Ahmad, Z., et al.: Atmospheric correction algorithm for hyperspectral remote sensing of ocean color from space. Appl. Opt. 39(6), 887–896 (2000)CrossRefGoogle Scholar
  52. 52.
    Gao, B.C., Han, W., Tsay, S.C., et al.: Cloud detection over the arctic region using airborne imaging spectrometer data during the daytime. J. Appl. Meteorol. 37(11), 1421–1429 (1998)CrossRefGoogle Scholar
  53. 53.
    Merucci, L., Bogliolo, M.P., Buongiorno, M.F., et al.: Spectral emissivity and temperature maps of the solfatara crater from DAIS hyperspectral images. Ann. Geophys. 49(1), 235–244 (2006)Google Scholar
  54. 54.
    Bishop, C.A., Liu, J.G., Mason, P.J.: Hyperspectral remote sensing for mineral exploration in Pulang, Yunnan Province, China. Int. J. Remote. Sens. 32(9), 2409–2426 (2011)CrossRefGoogle Scholar
  55. 55.
    Vos, R.J., Hakvoort, J.H.M., Jordans, R.W.J., et al.: Multiplatform optical monitoring of eutrophication in temporally and spatially variable lakes. Sci. Total Environ. 312(1–3), 221–243 (2003)CrossRefGoogle Scholar
  56. 56.
    Koponen, S., Pulliainen, J., Kallio, K., et al.: Lake water quality classification with airborne hyperspectral spectrometer and simulated MERIS data. Remote Sens. Environ. 79, 51–59 (2002)CrossRefGoogle Scholar
  57. 57.
    Politi, E., Cutler, M.E.J., Rowan, J.S.: Evaluating the spatial transferability and temporal repeatability of remote-sensing-based lake water quality retrieval algorithms at the european scale: a meta-analysis approach. Int. J. Remote. Sens. 36(11), 2995–3023 (2015)CrossRefGoogle Scholar
  58. 58.
    Tilley, D.R., Ahmed, M., Son, J.H., et al.: Hyperspectral reflectance of emergent macrophytes as an indicator of water column ammonia in an oligohaline, subtropical marsh. Ecol. Eng. 21(2–3), 153–163 (2003)CrossRefGoogle Scholar
  59. 59.
    Pulliainen, J., Kallio, K., Eloheimo, K., et al.: A semi-operative approach to lake water quality retrieval from remote sensing data. Sci. Total Environ. 268(1–3), 79–93 (2001)CrossRefGoogle Scholar
  60. 60.
    Bachmann, C.M., Donato, T.F., Lamela, G.M., et al.: Automatic classification of land cover on Smith Island, VA, using HyMAP imageryPCA. IEEE Trans. Geosci. Remote Sens. 40(10), 2313–2330 (2002)CrossRefGoogle Scholar
  61. 61.
    Luft, L., Neumann, C., Freude, M., et al.: Hyperspectral modeling of ecological indicators - a new approach for monitoring former military training areas. Ecol. Ind. 46, 264–285 (2014)CrossRefGoogle Scholar
  62. 62.
    Gu, Y.F., Wang, C., Wang, S.Z., et al.: Kernel-based regularized-angle spectral matching for target detection in hyperspectral imagery. Pattern Recogn. Lett. 32(2), 114–119 (2011)CrossRefGoogle Scholar
  63. 63.
    White, J.C., Gomez, C., Wulder, M.A., et al.: Characterizing temperate forest structural and spectral diversity with hyperion EO-1 data. Remote Sens. Environ. 114(7), 1576–1589 (2010)CrossRefGoogle Scholar
  64. 64.
    Zhang, C., Cheng, H., Chen, Z., et al.: The development of hyperspectral remote sensing and its threatening to military equipment. Electro-optic Technol Appl. 23(1), 10–12 (2008)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2019

Authors and Affiliations

  • Huimin Xing
    • 1
    • 2
    • 3
    • 4
  • Haikuan Feng
    • 1
    • 2
    • 3
    • 4
    Email author
  • Jingying Fu
    • 1
    • 2
    • 3
    • 4
  • Xingang Xu
    • 1
    • 2
    • 3
    • 4
  • Guijun Yang
    • 1
    • 2
    • 3
    • 4
  1. 1.Key Laboratory of Quantitative Remote Sensing in Agriculture of Ministry of Agriculture P. R. ChinaBeijing Research Center for Information Technology in AgricultureBeijingChina
  2. 2.National Engineering Research Center for Information Technology in AgricultureBeijingChina
  3. 3.Beijing Engineering Research Center of Agriculture Internet of ThingsBeijingChina
  4. 4.Institute of Geographic Sciences and Natural Resources ResearchCASBeijingChina

Personalised recommendations