Advertisement

Goal-oriented A Posteriori Error Estimates in Linearized Elasticity

  • Marcus Olavi RüterEmail author
Chapter
Part of the Lecture Notes in Applied and Computational Mechanics book series (LNACM, volume 88)

Abstract

In this chapter, attention is focused on goal-oriented error estimation procedures that are based on generalized error measures because they are, in most cases, of greater interest to engineers than their energy norm counterparts. The error estimation procedures presented in the previous chapter for both Galerkin mesh-based and meshfree methods are extended in this chapter to provide an estimation of the generalized error measure. This error measure is typically related to the error of a given quantity of interest that naturally occurs in the design-specific computation of an engineering model within the computational V&V strategy. Examples of quantities of interest are local displacement or stress distributions and the fracture criterion in fracture mechanics problems, which is frequently a nonlinear quantity of interest that requires a linearization. To estimate the error of a given quantity of interest, a so-called dual problem needs to be solved in addition to the primal problem, which is, in this chapter, the conventional linearized elasticity problem. Moreover, a multi-space strategy is introduced that can use used to solve the dual problem on a different mesh or particle distribution and adds versatility to the goal-oriented error estimation procedures.

References

  1. Becker, R., Rannacher, R.: A feed-back approach to error control in finite element methods: Basic analysis and examples. East-West J. Numer. Math. 4, 237–264 (1996)MathSciNetzbMATHGoogle Scholar
  2. Cirak, F., Ramm, E.: A posteriori error estimation and adaptivity for linear elasticity using the reciprocal theorem. Comput. Methods Appl. Mech. Engrg. 156, 351–362 (1998)MathSciNetCrossRefGoogle Scholar
  3. Eriksson, K., Estep, D., Hansbo, P., Johnson, C.: Introduction to adaptive methods for differential equations. Acta Numer. 106–158 (1995)Google Scholar
  4. Gerasimov, T., Rüter, M., Stein, E.: An explicit residual-type error estimator for \({\mathbb{Q}}_1\)-quadrilateral extended finite element method in two-dimensional linear elastic fracture mechanics. Int. J. Numer. Meth. Engng. 90, 1118–1155 (2012)Google Scholar
  5. Giner, E., Fuenmayor, F.J., Tarancón, J.E.: An improvement of the EDI method in linear elastic fracture mechanics by means of an a posteriori error estimator in \(G\). Int. J. Numer. Meth. Engng. 59, 533–558 (2004)CrossRefGoogle Scholar
  6. González-Estrada, O.A., Ródenas, J.J., Bordas, S.P.A., Nadal, E., Kerfriden, P., Fuenmayor, F.J.: Locally equilibrated stress recovery for goal oriented error estimation in the extended finite element method. Comput. & Struct. 152, 1–10 (2015)CrossRefGoogle Scholar
  7. Heintz, P., Larsson, F., Hansbo, P., Runesson, K.: Adaptive strategies and error control for computing material forces in fracture mechanics. Int. J. Numer. Meth. Engng. 60, 1287–1299 (2004)CrossRefGoogle Scholar
  8. Korotov, S., Neittaanmäki, P., Repin, S.: A posteriori error estimation of goal-oriented quantities by the superconvergence patch recovery. J. Numer. Math. 11, 33–59 (2003)MathSciNetCrossRefGoogle Scholar
  9. Korotov, S., Rüter, M., Steenbock, C.: A posteriori error control in terms of linear functionals with applications to fracture mechanics. In: Simos, T.E., Psihoyios, G. (eds.) Lecture Series on Computer and Computational Sciences, vol. 8, pp. 117–120. Brill, Boston (2007)zbMATHGoogle Scholar
  10. Larsson, F., Hansbo, P., Runesson, K.: Strategies for computing goal-oriented a posteriori error measures in non-linear elasticity. Int. J. Numer. Meth. Engng. 55, 879–894 (2002)MathSciNetCrossRefGoogle Scholar
  11. Oden, J.T., Prudhomme, S.: Goal-oriented error estimation and adaptivity for the finite element method. Comput. Math. Appl. 41, 735–756 (2001)MathSciNetCrossRefGoogle Scholar
  12. Ohnimus, S., Stein, E., Walhorn, E.: Local error estimates of FEM for displacements and stresses in linear elasticity by solving local Neumann problems. Int. J. Numer. Meth. Engng. 52, 727–746 (2001)MathSciNetCrossRefGoogle Scholar
  13. Panetier, J., Ladevèze, P., Chamoin, L.: Strict and effective bounds in goal-oriented error estimation applied to fracture mechanics problems solved with XFEM. Int. J. Numer. Meth. Engng. 81, 671–700 (2010)MathSciNetzbMATHGoogle Scholar
  14. Paraschivoiu, M., Peraire, J., Patera, A.T.: A posteriori finite element bounds for linear-functional outputs of elliptic partial differential equations. Comput. Methods Appl. Mech. Engrg. 150, 289–312 (1997)MathSciNetCrossRefGoogle Scholar
  15. Prager, W., Synge, J.L.: Approximations in elasticity based on the concept of function space. Quart. Appl. Math. 5, 241–269 (1947)MathSciNetCrossRefGoogle Scholar
  16. Prudhomme, S., Oden, J.T.: On goal-oriented error estimation for local elliptic problems: application to the control of pointwise errors. Comput. Methods Appl. Mech. Engrg. 176, 313–331 (1999)MathSciNetCrossRefGoogle Scholar
  17. Rannacher, R., Suttmeier, F.-T.: A feed-back approach to error control in finite element methods: application to linear elasticity. Comput. Mech. 19, 434–446 (1997)MathSciNetCrossRefGoogle Scholar
  18. Rössle, A.: Corner singularities and regularity of weak solutions for the two-dimensional Lamé equations on domains with angular corners. J. Elasticity 60, 57–75 (2000)MathSciNetCrossRefGoogle Scholar
  19. Rüter, M., Chen, J.S.: A multi-space error estimation approach for meshfree methods. In: Brandts, J., Korotov, S., Křížek, M., Segeth, K., Šístek, J., Vejchodský, T. (eds.) Applications of Mathematics 2015—International Conference in Honor of the 90\(\text{th}\) Birthday of Ivo Babuška and the 85\(\text{ th }\) Birthdays of Milan Práger and Emil Vitásek, pp. 194–205. Czech Republic, Prague (2015)Google Scholar
  20. Rüter, M., Gerasimov, T., Stein, E.: Goal-oriented explicit residual-type error estimates in XFEM. Comput. Mech. 52, 361–376 (2013)MathSciNetCrossRefGoogle Scholar
  21. Rüter, M., Korotov, S., Steenbock, C.: A posteriori error estimates in linear elastic fracture mechanics based on different FE-solution spaces for the primal and the dual problem. Rakenteiden Mekaniikka (Journal of Structural Mechanics) 38, 87–90 (2005)zbMATHGoogle Scholar
  22. Rüter, M., Korotov, S., Steenbock, C.: Goal-oriented error estimates based on different FE-spaces for the primal and the dual problem with applications to fracture mechanics. Comput. Mech. 39, 787–797 (2007)MathSciNetCrossRefGoogle Scholar
  23. Rüter, M., Stein, E.: Goal-oriented a posteriori error estimates in linear elastic fracture mechanics. Comput. Methods Appl. Mech. Engrg. 195, 251–278 (2006)MathSciNetCrossRefGoogle Scholar
  24. Rüter, M., Stein, E.: Goal-oriented residual error estimates for XFEM approximations in LEFM. In: Mueller-Hoeppe, D., Loehnert, S., Reese, S. (eds.) Recent Developments and Innovative Applications in Computational Mechanics, pp. 231–238. Springer, Berlin (2011)CrossRefGoogle Scholar
  25. Stein, E., Rüter, M.: Finite element methods for elasticity with error-controlled discretization and model adaptivity. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.) Encyclopedia of Computational Mechanics, vol. 3, 2nd edn., pp. 5–100. John Wiley & Sons, Chichester (2017)Google Scholar
  26. Stone, T.J., Babuška, I.: A numerical method with a posteriori error estimation for determining the path taken by a propagating crack. Comput. Methods Appl. Mech. Engrg. 160, 245–271 (1998)MathSciNetCrossRefGoogle Scholar
  27. Strouboulis, T., Babuška, I., Datta, D.K., Copps, K., Gangaraj, S.K.: A posteriori estimation and adaptive control of the error in the quantity of interest. Part I: A posteriori estimation of the error in the von Mises stress and the stress intensity factor. Comput. Methods Appl. Mech. Engrg. 181, 261–294 (2000)MathSciNetCrossRefGoogle Scholar
  28. Xuan, Z.C., Parés, N., Peraire, J.: Computing upper and lower bounds for the \(J\)-integral in two-dimensional linear elasticity. Comput. Methods Appl. Mech. Engrg. 195, 430–443 (2006)MathSciNetCrossRefGoogle Scholar
  29. Zienkiewicz, O.C., Zhu, J.Z.: A simple error estimator and adaptive procedure for practical engineering analysis. Int. J. Numer. Meth. Engng. 24, 337–357 (1987)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringUniversity of CaliforniaLos AngelesUSA

Personalised recommendations