Advertisement

Newtonian and Eshelbian Mechanics

  • Marcus Olavi RüterEmail author
Chapter
Part of the Lecture Notes in Applied and Computational Mechanics book series (LNACM, volume 88)

Abstract

The objective of this chapter is to present an introduction to the theory of continuum mechanics of elastic structures. Classical continuum mechanics deals with finding the spatial configuration of an elastic body that is subjected to external forces. This forward problem is attributed to Sir Isaac Newton and therefore termed Newtonian mechanics. In the associated inverse problem, which is attributed to John Douglas Eshelby and therefore termed Eshelbian mechanics, we are concerned with the forces applied to the spatial configuration. In Newtonian mechanics, the applied forces are of a physical nature, and as a result, the associated stress that arises in the spatial configuration of the elastic body is well known as the (physical) Cauchy stress. In Eshelbian mechanics, on the other hand, the deformed elastic body is subjected to so-called material forces, and the resulting stress in the initial configuration (of the forward problem) is termed the (material) Eshelby stress. In this chapter, the stress tensors that naturally appear in both Newtonian and Eshelbian mechanics are systematically derived for both compressible and (nearly) incompressible materials.

References

  1. Antman, S.S.: Nonlinear Problems of Elasticity, 2nd edn. Springer, New York (2005)zbMATHGoogle Scholar
  2. Arruda, E.M., Boyce, M.C.: A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41, 389–412 (1993)zbMATHCrossRefGoogle Scholar
  3. Bennett, K.C., Regueiro, R.A., Borja, R.I.: Finite strain elastoplasticity considering the Eshelby stress for materials undergoing plastic volume change. Int. J. Plast. 77, 214–245 (2016)CrossRefGoogle Scholar
  4. Bertram, A.: Elasticity and Plasticity of Large Deformations, 3rd edn. Springer, Berlin (2012)zbMATHCrossRefGoogle Scholar
  5. Blatz, P.J., Ko, W.L.: Application of finite elasticity to the deformations of rubbery materials. Trans. Soc. Rheology 6, 223–251 (1962)CrossRefGoogle Scholar
  6. Bonet, J., Wood, R.D.: Nonlinear Continuum Mechanics for Finite Element Analysis, 2nd edn. Cambridge University Press, Cambridge (2008)zbMATHCrossRefGoogle Scholar
  7. Brink, U., Stein, E.: On some mixed finite element methods for incompressible and nearly incompressible finite elasticity. Comput. Mech. 19, 105–119 (1996)zbMATHCrossRefGoogle Scholar
  8. Cescotto, S., Fonder, G.: A finite element approach for large strains of nearly incompressible rubber-like materials. Int. J. Solids Structures 15, 589–605 (1979)zbMATHCrossRefGoogle Scholar
  9. Chadwick, P.: Applications of an energy-momentum tensor in non-linear elastostatics. J. Elasticity 5, 249–258 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  10. Ciarlet P.G.: Mathematical Elasticity, Volume 1: Three-Dimensional Elasticity. Elsevier Science Publishers B.V. (North-Holland), Amsterdam (1988)Google Scholar
  11. DeHoff, R.T.: Thermodynamics in Materials Science, 2nd edn. CRC Press, Boca Raton (2006)Google Scholar
  12. Dimitrienko, Y.I.: Nonlinear Continuum Mechanics and Large Inelastic Deformations. Springer, Dordrecht (2011)zbMATHCrossRefGoogle Scholar
  13. Doyle, T.C., Ericksen, J.L.: Nonlinear elasticity. Adv. Appl. Mech. 4, 53–115 (1956)MathSciNetCrossRefGoogle Scholar
  14. Eshelby, J.D.: The force on an elastic singularity. Philos. Trans. Roy. Soc. London Ser. A 244, 87–112 (1951)Google Scholar
  15. Eshelby, J.D.: The elastic energy-momentum tensor. J. Elasticity 5, 321–335 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  16. Flory, P.J.: Thermodynamic relations for high elastic materials. Trans. Faraday. Soc. 57, 829–838 (1961)MathSciNetCrossRefGoogle Scholar
  17. Govindjee, S., Mihalic, P.H.: Computational methods for inverse finite elastostatics. Comput. Methods Appl. Mech. Engrg. 136, 47–57 (1996)zbMATHCrossRefGoogle Scholar
  18. Govindjee, S., Mihalic, P.H.: Computational methods for inverse deformations in quasi-incompressible finite elasticity. Int. J. Numer. Meth. Engng. 43, 821–838 (1998)zbMATHCrossRefGoogle Scholar
  19. Green, A.E., Zerna, W.: Theoretical Elasticity, 2nd edn. Oxford University Press, London (1968)zbMATHGoogle Scholar
  20. Gurtin, M.E.: An Introduction to Continuum Mechanics. Academic Press, New York (1981)zbMATHGoogle Scholar
  21. Gurtin, M.E.: Configurational Forces as Basic Concepts of Continuum Physics. Springer, New York (2000)zbMATHGoogle Scholar
  22. Häggblad, B., Sundberg, J.A.: Large strain solutions of rubber components. Comput. & Struct. 17, 835–843 (1983)CrossRefGoogle Scholar
  23. Haupt, P.: Continuum Mechanics and Theory of Materials, 2nd edn. Springer, Berlin (2002)zbMATHCrossRefGoogle Scholar
  24. Holzapfel, G.A.: Nonlinear Solid Mechanics—A Continuum Approach for Engineering. John Wiley & Sons, Chichester (2000)Google Scholar
  25. Holzapfel, G.A., Gasser, T.C.: A viscoelastic model for fiber-reinforced composites at finite strains: Continuum basis, computational aspects and applications. Comput. Methods Appl. Mech. Engrg. 190, 4379–4403 (2001)CrossRefGoogle Scholar
  26. Irgens, F.: Continuum Mechanics. Springer, Berlin (2008)Google Scholar
  27. Kaliske, M.: A formulation of elasticity and viscoelasticity for fibre reinforced material at small and finite strains. Comput. Methods Appl. Mech. Engrg. 185, 225–243 (2000)zbMATHCrossRefGoogle Scholar
  28. Kienzler, R., Herrmann, G.: Mechanics in Material Space—with Applications to Defect and Fracture Mechanics. Springer, Berlin (2000)Google Scholar
  29. Le Tallec, P.: Numerical methods for nonlinear three-dimensional elasticity. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. III, pp. 465–622. Elsevier Science Publishers B.V. (North-Holland), Amsterdam (1994)Google Scholar
  30. Lu, J., Papadopoulos, P.: Referential Doyle-Ericksen formulae for the Eshelby tensor in non-linear elasticity. Z. Angew. Math. Phys. 54, 964–976 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  31. Lurie, A.I.: Theory of Elasticity. Springer, Berlin (2005)CrossRefGoogle Scholar
  32. Malvern, L.E.: Introduction to the Mechanics of a Continuous Medium. Prentice-Hall, Englewood Cliffs (1969)Google Scholar
  33. Marsden, J.E., Hughes, T.J.R.: Mathematical Foundations of Elasticity. Prentice-Hall, Englewood Cliffs (1983)zbMATHGoogle Scholar
  34. Martins, J.A.C., Pires, E.B., Salvador, R., Dinis, P.B.: A numerical model of passive and active behaviour of skeletal muscles. Comput. Methods Appl. Mech. Engrg. 151, 419–433 (1998)zbMATHCrossRefGoogle Scholar
  35. Maugin, G.A.: Material Inhomogeneities in Elasticity. Chapman & Hall, London (1993)zbMATHCrossRefGoogle Scholar
  36. Maugin, G.A.: Material forces: Concepts and applications. Appl. Mech. Rev. 48, 213–245 (1995)CrossRefGoogle Scholar
  37. Maugin, G.A.: On the universality of the thermomechanics of forces driving singular sets. Arch. Appl. Mech. 70, 31–45 (2000)zbMATHCrossRefGoogle Scholar
  38. Maugin, G.A.: Non-Classical Continuum Mechanics. Springer, Singapore (2017)zbMATHCrossRefGoogle Scholar
  39. Mooney, M.: A theory of large elastic deformations. J. Appl. Phys. 11, 582–592 (1940)zbMATHCrossRefGoogle Scholar
  40. Ogden, R.W.: Non-Linear Elastic Deformations. Ellis Horwood, Chichester (1984)zbMATHGoogle Scholar
  41. Penn, R.W.: Volume changes accompanying the extension of rubber. Trans. Soc. Rheology 14, 509–517 (1970)CrossRefGoogle Scholar
  42. Reese, S., Raible, T., Wriggers, P.: Finite element modelling of orthotropic material behaviour in pneumatic membranes. Int. J. Solids Structures 38, 9525–9544 (2001)zbMATHCrossRefGoogle Scholar
  43. Rivlin, R.S.: Large elastic deformations of isotropic materials IV. Further developments of the general theory. Philos. Trans. Roy. Soc. London, Ser. A 241, 379–397 (1948)MathSciNetzbMATHCrossRefGoogle Scholar
  44. Rivlin, R.S., Saunders, D.W.: Large elastic deformations of isotropic materials VII. Experiments on the deformation of rubber. Philos. Trans. Roy. Soc. London, Ser. A 243, 251–288 (1950)zbMATHCrossRefGoogle Scholar
  45. Rüter, M., Stein, E.: Analysis, finite element computation and error estimation in transversely isotropic nearly incompressible finite elasticity. Comput. Methods Appl. Mech. Engrg. 190, 519–541 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  46. Schröder, J., Neff, P.: Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions. Int. J. Solids Structures 40, 401–445 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  47. Shield, R.T.: Inverse deformation results in finite elasticity. Z. Angew. Math. Phys. 18, 490–500 (1967)zbMATHCrossRefGoogle Scholar
  48. Simo, J.C., Taylor, R.L., Pister, K.S.: Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Comput. Methods Appl. Mech. Engrg. 51, 177–208 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  49. Spencer, A.J.M.: The formulation of constitutive equation for anisotropic solids. In: Boehler, J.P. (ed.) Mechanical Behavior of Anisotropic Solids, pp. 2–26. Martinus Nijhoff Publishers, The Hague (1979)Google Scholar
  50. Spencer, A.J.M.: Constitutive theory for strongly anisotropic solids. In: Spencer, A.J.M. (ed.) Continuum Theory of the Mechanics of Fibre-Reinforced Composites, pp. 1–32. Springer, Wien (1984)CrossRefGoogle Scholar
  51. Stein, E., Barthold, F.-J.: Elastizitätstheorie. In: Mehlhorn, G. (ed.) Der Ingenieurbau, pp. 165–434. Ernst & Sohn, Berlin (1997)Google Scholar
  52. Stein, E., Rüter, M.: Finite element methods for elasticity with error-controlled discretization and model adaptivity. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.) Encyclopedia of Computational Mechanics, vol. 3, 2nd edn., pp. 5–100. John Wiley & Sons, Chichester (2017)Google Scholar
  53. Steinmann, P.: Application of material forces to hyperelastostatic fracture mechanics. I. Continuum mechanical setting. Int. J. Solids Structures 37, 7371–7391 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  54. Steinmann, P.: Geometrical Foundations of Continuum Mechanics—An Application to First- and Second-Order Elasticity and Elasto-Plasticity. Springer, Berlin (2015)Google Scholar
  55. Sussman, T., Bathe, K.-J.: A finite element formulation for nonlinear incompressible elastic and inelastic analysis. Comput. & Struct. 26, 357–409 (1987)zbMATHCrossRefGoogle Scholar
  56. Temam, R., Miranville, A.: Mathematical Modeling in Continuum Mechanics. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  57. Treloar, L.R.G.: The Physics of Rubber Elasticity, 3rd edn. Oxford University Press, Oxford (2005)Google Scholar
  58. Truesdell, C., Noll, W.: The Non-Linear Field Theories of Mechanics, 3rd edn. Springer, Berlin (2004)zbMATHCrossRefGoogle Scholar
  59. Weiss, J.A., Maker, B.N., Govindjee, S.: Finite element implementation of incompressible, transversely isotropic hyperelasticity. Comput. Methods Appl. Mech. Engrg. 135, 107–128 (1996)zbMATHCrossRefGoogle Scholar
  60. Wilmański, K.: Thermodynamics of Continua. Springer, Berlin (1998)zbMATHGoogle Scholar
  61. Yeoh, O.H.: Characterization of elastic properties of carbon-black-filled rubber vulcanizates. Rubber Chem. Technol. 63, 792–805 (1990)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringUniversity of California Los AngelesLos AngelesUSA

Personalised recommendations