Advertisement

Abstract

In this paper, we introduce a method for modeling with words based on hedge algebra using fuzzy cognitive map. Our model, called linguistic cognitive map, consists of set of vertices and edges with value to be linguistic variables. We figure out relationship between the length of linguistic variables for fuzzifying data and a number of partition from unit interval. We also prove finite properties of state space, generating from linguistic cognitive map.

Keywords

Fuzzy logics Linguistic variable Hedge algebra Fuzzy cognitive map 

References

  1. 1.
    Kosko, B.: Fuzzy cognitive maps. Int. J. Man Mach. Stud. 24, 65–75 (1986)CrossRefGoogle Scholar
  2. 2.
    Osoba, O.A., Kosko, B.: Fuzzy cognitive maps of public support for insurgency and terrorism. J. Defense Model. Simul. Appl. Methodol. 14(I), 17–32 (2017)Google Scholar
  3. 3.
    Glykas, M.: Fuzzy Cognitive Maps, Advances in Theory Tools and Applications. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-03220-2CrossRefzbMATHGoogle Scholar
  4. 4.
    Papageorgiou, E.I.: Fuzzy Cognitive Maps for Applied Science and Engineering From Fundamentals to Extensions and Learning Algorithms. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-39739-4CrossRefGoogle Scholar
  5. 5.
    Zadeh, L.A.: Computing with words - Principal Concepts and Ideas. Studies in Fuzziness and Soft Computing. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-27473-2CrossRefzbMATHGoogle Scholar
  6. 6.
    Kacprzyk, J., Wilbik, A., Zadrożny, S.: Linguistic summarization of trends: a fuzzy logic based approach. In: The 11th International Conference Information Processing and Management of Uncertainty in Knowledge-based Systems, pp. 2166–2172 (2006)Google Scholar
  7. 7.
    Ho, N.C., Wechler, W.: Hedge algebras: an algebraic approach to structure of sets of linguistic truth values. Fuzzy Sets Syst. 35, 281–293 (1990)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Ho, N.C., Van Long, N.: Fuzziness measure on complete hedge algebras and quantifying semantics of terms in linear hedge algebras. Fuzzy Sets Syst. 158(4), 452–471 (2007)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Phuong, L.A., Khang, T.D.: Generalized if... then... else... inference rules with linguistic modifiers for approximate reasoning. Int. J. Comput. Sci. Issues (IJCSI) 9(6), 184–190 (2012). No 3Google Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Authors and Affiliations

  1. 1.Faculty of Information TechnologyCollege of Science, Hue UniversityHue cityVietnam
  2. 2.Faculty of Information TechnologyNguyen Tat Thanh UniversityHo Chi Minh cityVietnam

Personalised recommendations