Advertisement

Post-quantum Cryptoschemes: New Finite Non-commutative Algebras for Defining Hidden Logarithm Problem

  • Hieu Minh NguyenEmail author
  • Nikolay Andreevich Moldovyan
  • Alexandr Andreevich Moldovyan
  • Nam Hai Nguyen
  • Cong Manh Tran
  • Ngoc Han Phieu
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 266)

Abstract

In the article we present some properties of non-commutative finite algebras of four-dimension vectors with parameterized multiplication operation characterized in that different modifications of the multiplication operation are mutually associative. One of the introduced finite algebras represents ring. Other algebra contains no global unit element, its elements are invertible locally, and is characterized in that the multiplication operation possess compression property. Regarding the investigated ring, the detailed attention is paid to properties of the set of non-invertible elements of the ring. Formulas for zero-divisors and unit elements of different types are derived. The introduced finite algebras represent interest to define over them the hidden discrete logarithm problem that is a promising cryptographic primitive for post-quantum cryptography.

Keywords

Finite algebra Ring Galois field Vector Local left unit element Bi-side unit element Associative multiplication Parameterized multiplication Cryptoscheme 

References

  1. 1.
    Sirwan, A., Majeed, N.: New algorithm for wireless network communication security. Int. J. Cryptogr. Inf. Secur. 6(3/4), 1–8 (2016)Google Scholar
  2. 2.
    Feng, Y., Yang, G., Liu, J.K.: A new public remote integrity checking scheme with user and data privacy. Int. J. Appl. Cryptogr. 3(3), 196–209 (2017)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chiou, S.Y.: Novel digital signature schemes based on factoring and discrete logarithms. Int. J. Secur. Appl. 10(3), 295–310 (2016)Google Scholar
  4. 4.
    Poulakis, D.: A variant of digital signature algorithm. Des. Codes Cryptogr. 51(1), 99–104 (2009)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Yan, S.Y.: Quantum Computational Number Theory, 1st edn. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-25823-2CrossRefzbMATHGoogle Scholar
  6. 6.
    Yan, S.Y.: Quantum Attacks on Public-Key Cryptosystems, 1st edn. Springer, Boston (2013).  https://doi.org/10.1007/978-1-4419-7722-9CrossRefzbMATHGoogle Scholar
  7. 7.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on quantum computer. SIAM J. Comput. 26, 1484–1509 (1997)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Smolin, J.A., Smith, G., Vargo, A.: Oversimplifying quantum factoring. Nature 499(7457), 163–165 (2013)CrossRefGoogle Scholar
  9. 9.
    Federal Register: Announcing Request for Nominations for Public-Key Post-Quantum Cryptographic Algorithms. The Daily journal of the United States Government. https://www.gpo.gov/fdsys/pkg/FR-2016-12-20/pdf/2016-30615.pdf. Accessed 6 June 2018
  10. 10.
    Takagi, T. (ed.): PQCrypto 2016. LNCS, vol. 9606. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-29360-8CrossRefzbMATHGoogle Scholar
  11. 11.
    Sakalauskas, E., Tvarijonas, P., Raulynaitis, A.: Key Agreement Protocol (KAP) using conjugacy and discrete logarithm problems in group representation level. Informatica 18(1), 115–124 (2007)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Moldovyan, D.N.: Non-commutative finite groups as primitive of public-key cryptoschemes. Quasigroups Relat. Syst. 18(2), 165–176 (2010)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Moldovyan, D.N., Moldovyan, N.A.: Cryptoschemes over hidden conjugacy search problem and attacks using homomorphisms. Quasigroups Relat. Syst. 18(2), 177–186 (2010)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Kuz’min, A.S., Markov, V.T., Mikhalev, A.A., Mikhalev, A.V., Nechaev, A.A.: Cryptographical algorithms on groups and algebras. J. Math. Sci. 223(5), 629–641 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Moldovyan, N.A., Moldovyanu, P.A.: Vector form of the finite fields \(GF(p^m)\). Bul. Acad. Ştiinţe Repub. Mold. Mat. 3(61), 1–7 (2009)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Ronyai, L.: Computing the structure of finite algebras. J. Symb. Comput. 9, 355–373 (1990)MathSciNetCrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Authors and Affiliations

  • Hieu Minh Nguyen
    • 1
    Email author
  • Nikolay Andreevich Moldovyan
    • 2
  • Alexandr Andreevich Moldovyan
    • 2
  • Nam Hai Nguyen
    • 1
  • Cong Manh Tran
    • 3
  • Ngoc Han Phieu
    • 1
  1. 1.Academy of Cryptography TechniquesHanoiVietnam
  2. 2.St. Petersburg Institute for Informatics and Automation of Russian Academy of SciencesSt. PetersburgRussia
  3. 3.Le Quy Don Technical UniversityHanoiVietnam

Personalised recommendations