Formal Context Representation and Calculus for Context-Aware Computing

  • Ammar AlsaigEmail author
  • Vangalur Alagar
  • Nematollaah Shiri
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 266)


Context is a rich concept that is mostly understood and used with different representations and interpretations in many different fields. This variety of usage adds both richness and vagueness, thus creating more complexity to comprehension, interpretation, and reasoning with contexts. As pervasive computing technology becomes more and more intrusive there is a need to construct formally verifiable context-aware computing environment, in which human dignity is preserved through safety, security, and privacy. These features cannot be ensured unless context notion is formalized, both in representation and reasoning. Motivated by this concern this paper introduces a formal context representation and a context calculus which can be used to build context models for many applications.


Context modeling Context-awareness Formal representation Reasoning 


  1. 1.
    Akman, V., Surav, M.: The use of situation theory in context modeling. Comput. Intell. Int. J. 13(3), 427–438 (1997)Google Scholar
  2. 2.
    Alaga, V., Wan, K.: Context based enforcement of authorization for privacy and security in identity management. In: de Leeuw, E., Fischer-Hübner, S., Tseng, J., Borking, J. (eds.) Policies and Research in Identity Management. The International Federation for Information Processing, vol. 261, pp. 25–37. Springer, Boston (2008). Scholar
  3. 3.
    Alagar, V., Mohammad, M., Wan, K., Hnaide, S.A.: A framework for developing context-aware systems. EAI Endorsed Trans. Context-Aware Syst. Appl. 14(1) (2014). Scholar
  4. 4.
    Brèzillon, P., Gonzalez, A.I.: Context in Computing: A Cross-Disciplinary Approach to Modeling Real World. Springer, Berlin (2014)CrossRefGoogle Scholar
  5. 5.
    Brézillon, P.: Context in human-machine problem solving: a survey. LIP 6(1996), 029 (1996)Google Scholar
  6. 6.
    Carnap, R.: Meaning and Necessity. Chicago University Press, Chicago (1947). Enlarged Edition 1956zbMATHGoogle Scholar
  7. 7.
    Clark, H.H., Carlson, T.B.: Context for comprehension. In: Attention and Performance, pp. 313–330. Lawrence Erlbaum Associates, Hillside (1981)Google Scholar
  8. 8.
    Dey, A.K., Abowd, G.D., Salber, D.: A conceptual framework and a toolkit for supporting the rapid prototyping of context-aware applications. Hum.-Comput. Interact. 16, 97–161 (2001)CrossRefGoogle Scholar
  9. 9.
    Dey, A.K.: Understanding and using context. Pers. Ubiquit. Comput. 5(1), 4–7 (2001)CrossRefGoogle Scholar
  10. 10.
    Dowley, D., Wall, R., Peters, S.: Introduction to Montague Semantics. Reidel Publishing Company, Amsterdam (1981)Google Scholar
  11. 11.
    Bettini, C., et al.: A survey of context modelling and reasoning techniques. Pervasive Mob. Comput. 6, 161–180 (2009)CrossRefGoogle Scholar
  12. 12.
    García, K., Brézillon, P.: A contextual model of turns for group work. In: Christiansen, H., Stojanovic, I., Papadopoulos, G.A. (eds.) CONTEXT 2015. LNCS (LNAI), vol. 9405, pp. 243–256. Springer, Cham (2015). Scholar
  13. 13.
    García, K., Brézillon, P.: Contextual graphs for modeling group interaction. In: Brézillon, P., Turner, R., Penco, C. (eds.) CONTEXT 2017. LNCS (LNAI), vol. 10257, pp. 151–164. Springer, Cham (2017). Scholar
  14. 14.
    Giunchiglia, F.: Contextual reasoning. Epistemologia, special issue on I Linguaggi e le Macchine 16, 345–364 (1993)Google Scholar
  15. 15.
    Grätzer, S.: Lattice Theory: First Concepts and Distributive Lattices. W. H. Freeman, San Francisco (1971)zbMATHGoogle Scholar
  16. 16.
    Guha, R.V.: Contexts: A Formalization and Some Applications, vol. 101. Stanford University Stanford (1991)Google Scholar
  17. 17.
    Held, A., Buchholz, S., Schill, A.: Modeling of context information for pervasive computing applications. In: Proceedings of SCI, pp. 167–180 (2002)Google Scholar
  18. 18.
    Interdisciplinary and Internal Conference Series. Modeling and using context (1997)Google Scholar
  19. 19.
    McCarthy, J.: Notes on formalizing context (1993)Google Scholar
  20. 20.
    McCarthy, J., Buvac, S.: Formalizing context (expanded notes) (1997)Google Scholar
  21. 21.
    Sato, M., Sakurai, T., Kameyama, Y.: A simply typed context calculus with first-class environments. In: Proceedings of FLOPs 2001: the 5th International Symposium on Functional and Logic Programming, pp. 359–374 (2001)CrossRefGoogle Scholar
  22. 22.
    Schilit, B., Adams, N., Want, R.: Context-aware computing applications. In: 1994 First Workshop on Mobile Computing Systems and Applications, WMCSA 1994, pp. 85–90. IEEE (1994)Google Scholar
  23. 23.
    Shoham, Y.: Varieties of context. In: Artificial Intelligence and Mathematical Theory of Computation: Papers in Honor of John McCarthy, pp. 393–408 (1991)CrossRefGoogle Scholar
  24. 24.
    Wan, K., Alagar, V., Paquet, J.: An architecture for developing context-aware systems. In: Roth-Berghofer, T.R., Schulz, S., Leake, D.B. (eds.) MRC 2005. LNCS (LNAI), vol. 3946, pp. 48–61. Springer, Heidelberg (2006). Scholar
  25. 25.
    Wan, K.: Lucx: lucid enriched with context. Ph.D. thesis, Concordia University (2006)Google Scholar
  26. 26.
    Wan, K., Alagar, V., Paquet, J.: A context theory for intensional programming. In: Workshop on Context Representation and Reasoning (CRR05). Citeseer, Paris, July 2005Google Scholar
  27. 27.
    Weyhrauch, R.: Prolegomena to a theory of mechanized formal reasoning. Artif. Intell. 13, 133–170 (1980)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Winograd, T.: Architecture for context. Hum.-Comput. Inter. 16, 401–419 (2001)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Authors and Affiliations

  1. 1.Concordia UniversityMontrealCanada

Personalised recommendations