Advertisement

Quantitative Thermal Analysis of Solidification in a High-Temperature Laser-Scanning Confocal Microscope

  • Dasith LiyanageEmail author
  • Suk-Chun Moon
  • Madeleine Du Toit
  • Rian Dippenaar
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

Under near-equilibrium conditions, the concentric solidification technique proved to be an excellent way of studying in situ, solidification phenomena, but under rapid cooling conditions, the solid/liquid interface undergoes dynamic thermal and solute distributions. The current project aims to evaluate temperature distribution under rapid cooling conditions. A number of thermocouples are attached to the specimen surface and measured the temperature over the solidification period. The temperature profile within the liquid phase is measured separately by thinner thermocouple wires which are fixed to the crucible so that the surface tension of the molten liquid keeps the thermocouple suspended in the liquid pool. The dynamically changing temperature profile over the radial axis of the specimen under rapid cooling conditions is determined, including the all-important temperature at the solid/liquid interface. The calculated interface temperatures are utilized in phase-field simulations, and the results are found to be in excellent agreement with experimental results.

Keywords

HTLSCM Phase transformation Interface kinetics Transient cooling 

References

  1. 1.
    Hiroshi Chikama HS, Emi T, Suzuki M (1996) ‘‘In-situ’’ real time observation of planar to cellular and cellular to dendritic transition of crystals growing in Fe–C alloy melts. Mater Trans, JIM 37:620–626Google Scholar
  2. 2.
    Mark Reid DP, Dippenaar R (2004) Concentric solidification for high temperature laser scanning confocal microscopy. ISIJ Int 44CrossRefGoogle Scholar
  3. 3.
    Shibata H, Arai Y, Suzuki M, Emi T (2000) Kinetics of peritectic reaction and transformation in Fe-C alloys. Metall Mater Trans B 31(5):981–991CrossRefGoogle Scholar
  4. 4.
    Arai Y, Emi T, Fredfriksson H, Shibata H (2005) In-situ observed dynamics of peritectic solidification and transformation of Fe–3 to 5 at. Pct Ni alloys. Metall Mater Trans AGoogle Scholar
  5. 5.
    Kerr HW, Cisse J, Bolling G (1974) On equilibrium and non-equilibrium peritectic transformations. Acta Metall 22(6):677–686CrossRefGoogle Scholar
  6. 6.
    Stefanescu DM (2006) Microstructure evolution during the solidification of steel. ISIJ Int 46(6):786–794CrossRefGoogle Scholar
  7. 7.
    Griesser S (2013) In-situ study of the influence of alloying elements on the kinetics and mechanism of the peritectic phase transition in steel. Doctor of Philosophy thesis, Faculty of Engineering and Information Sciences, University of WollongongGoogle Scholar
  8. 8.
    Trivedi R (1980) Theory of dendritic growth during the directional solidification of binary alloys. J Cryst Growth 49(2):219–232CrossRefGoogle Scholar
  9. 9.
    Kurz W, Fisher DJ (1981) Dendrite growth at the limit of stability: tip radius and spacing. Acta Metall 29(1):11–20CrossRefGoogle Scholar
  10. 10.
    Aaronson HI (2002) Mechanisms of the massive transformation. Metall Mater Trans AGoogle Scholar
  11. 11.
    Bower TF, Flemings MC (1967) Formation of the chill zone in ingot solidification. AIME MET SOC TRANS 239(2):216–219Google Scholar
  12. 12.
    Trivedi R, Shin JH (2005) Modelling of microstructure evolution in peritectic systems. Mater Sci Eng, A 413–414:288–295CrossRefGoogle Scholar
  13. 13.
    Yin H, Emi T (2003) Marangoni flow at the gas/melt interface of steel. Metall Mater Trans B 34bGoogle Scholar
  14. 14.
    Phelan D (2002) In-situ studies of phase transformations in iron alloys. PhD thesisGoogle Scholar
  15. 15.
    Dominic Phelan MR, Dippenaar R (2006) Kinetics of the peritectic phase transformation: in-situ measurements and phase field modeling. Metall Mater Trans AGoogle Scholar
  16. 16.
    Griesser S et al (2014) Diffusional constrained crystal nucleation during peritectic phase transitions. Acta Mater 67:335–341CrossRefGoogle Scholar
  17. 17.
    Griesser S, Reid M, Pierer R, Bernhard C, Dippenaar R (2014) In situ quantification of micro-segregation that occurs during the solidification of steel. Steel Res Int 85(8):1257–1265CrossRefGoogle Scholar
  18. 18.
    Griesser S et al (2012) SolTrack: an automatic video processing software for in situ interface tracking. J Microsc 248(1):42–48CrossRefGoogle Scholar
  19. 19.
    Holman J (2002) Heat transfer, 9th edn. McGraw-HillGoogle Scholar
  20. 20.
    Marvin M (1961) Microscopy apparatus. Google PatentsGoogle Scholar
  21. 21.
    Thermocoupleinfo. https://www.thermocoupleinfo.com/thermocouple-types.htm. Accessed 4 June 2018
  22. 22.
    Rasband W (2012) ImageJ software. National Institutes of Health, Bethesda, MD, USA, 1997Google Scholar
  23. 23.
    Schmelzer JWP, Röpke G, Priezzhev VB (1999) Nucleation theory and applicationGoogle Scholar
  24. 24.
    Griesser S, Bernhard C, Dippenaar R (2014) Mechanism of the peritectic phase transition in Fe–C and Fe–Ni alloys under conditions close to chemical and thermal equilibrium. ISIJ Int 54(2):466–473CrossRefGoogle Scholar
  25. 25.
    Steinbach I, Apel M (2013) MICRESS the MICRostructure evolution simulation softwareGoogle Scholar
  26. 26.
    Andersson J-O et al (2002) Thermo-calc & DICTRA, computational tools for materials science. Calphad 26(2):273–312CrossRefGoogle Scholar
  27. 27.
    Tiaden J (1999) Phase field simulations of the peritectic solidification of Fe–C. J Cryst Growth 198/199:1275–1280CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Dasith Liyanage
    • 1
    Email author
  • Suk-Chun Moon
    • 1
  • Madeleine Du Toit
    • 1
  • Rian Dippenaar
    • 1
  1. 1.School of Mechanical, Materials, Mechatronic and Biomedical EngineeringUniversity of WollongongWollongongAustralia

Personalised recommendations