Field Information Recommendation Based on Context-Aware and Collaborative Filtering Algorithm

  • Zhili Chen
  • Chunjiang ZhaoEmail author
  • Huarui Wu
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 545)


Personalized recommendation technology is a valid way to solve the problem of “information overload”. In the face the complexity of agricultural field information and problems of farmers’ preference prediction accuracy which is not high, this paper proposes a kind of recommendation algorithm based on context-aware and collaborative filtering (CACF). The algorithm constructs the “user-item-context” 3D user interest model which contains the context information. Through calculating context similarity and adopting pre-filtering paradigm, the 3D model is reduced to “user-item” 2D model. By computing item similarity, it can predict the item rating and generate recommendations. The CACF was applied on the field information recommendation. The experimental results show that the CACF can accomplish higher recommendation precision and efficiency compared with the traditional User-based collaborative filtering algorithm (UBCF), Slope one algorithm (SLOA).


Context-aware Collaborative filtering Similarity calculation Personalized recommendation Field information 



This work was supported by Beijing Natural Science Foundation Key Program (4151001).


  1. 1.
    Wang, W.S., Guo, L.F.: Agricultural big data and its application prospect. Jiangsu Agric. Sci. (09), 1–5 (2015)Google Scholar
  2. 2.
    Zhang, H.R., Li, Z.L., Zou, T.F.: A review of agricultural big data. Comput. Sci. (S2), 387–392 (2014)Google Scholar
  3. 3.
    Ilarri, S., Hermoso, R., Trillo-Lado, R., Del Carmen Rodriguez-Hernandez, M.: A review of the role of sensors in mobile context-aware recommendation systems. Int. J. Distrib. Sens. (2015). Scholar
  4. 4.
    Unger, M., Bar, A., Shapira, B., Rokach, L.: Towards latent context-aware recommendation systems. Knowl.-Based Syst. 104, 165–178 (2016)CrossRefGoogle Scholar
  5. 5.
    Puglisi, S., Parra-Arnau, J., Forne, J., Rebollo-Monedero, D.: On content-based recommendation and user privacy in social-tagging systems. Comput. Stand. Interfaces 41, 17–27 (2015)CrossRefGoogle Scholar
  6. 6.
    Soares, M., Viana, P.: Tuning metadata for better movie content-based recommendation systems. Multimed. Tools Appl. 74(17), 7015–7036 (2015)CrossRefGoogle Scholar
  7. 7.
    Achakulvisut, T., Acuna, D.E., Ruangrong, T., Kording, K.: Science concierge: a fast content-based recommendation system for scientific publications. PLoS ONE 11, e01584237 (2016)CrossRefGoogle Scholar
  8. 8.
    Yang, Z., Cai, Z.: Detecting abnormal profiles in collaborative filtering recommender systems. J. Intell. Inf. Syst. 48(3), 499–518 (2017)CrossRefGoogle Scholar
  9. 9.
    Da Silva, E.Q., Camilo-Junior, C.G., Pascoal, L.M.L., Rosa, T.C.: An evolutionary approach for combining results of recommender systems techniques based on collaborative filtering. Expert Syst. Appl. 53, 204–218 (2016)CrossRefGoogle Scholar
  10. 10.
    Yang, Z., Xu, L., Cai, Z., Xu, Z.: Re-scale AdaBoost for attack detection in collaborative filtering recommender systems. Knowl.-Based Syst. 100, 74–88 (2016)CrossRefGoogle Scholar
  11. 11.
    Son, L.H.: HU-FCF: a hybrid user-based fuzzy collaborative filtering method in recommender systems. Expert Syst. Appl. 41(15), 6861–6870 (2014)CrossRefGoogle Scholar
  12. 12.
    Liu, Q., Xiong, Y., Huang, W.: Combining user-based and item-based models for collaborative filtering using stacked regression. Chin. J. Electron. 23(4), 712–717 (2014)Google Scholar
  13. 13.
    Pirasteh, P., Hwang, D., Jung, J.E.: Weighted similarity schemes for high scalability in user-based collaborative filtering. Mob. Netw. Appl. 20(4), 497–507 (2015)CrossRefGoogle Scholar
  14. 14.
    Hao, F., Blair, R.H.: A comparative study: classification vs user-based collaborative filtering for clinical prediction. BMC Med. Res. Methodol. 16, 172 (2016)CrossRefGoogle Scholar
  15. 15.
    Ma, W., Shi, J., Zhao, R.: Normalizing item-based collaborative filter using context-aware scaled baseline predictor. Math. Prob. Eng. (2017). Scholar
  16. 16.
    Du, Y., Yao, C., Huo, S., Liu, J.: A new item-based deep network structure using a restricted Boltzmann machine for collaborative filtering. Front. Inf. Technol. Electron. Eng. 18(5), 658–666 (2017)CrossRefGoogle Scholar
  17. 17.
    Li, C., He, K.: CBMR: an optimized MapReduce for item-based collaborative filtering recommendation algorithm with empirical analysis. Concurr. Comput. Pract. Eep. 29, e409210 (2017)Google Scholar
  18. 18.
    Zhang, J., et al.: Predictors of eGFR slope at one year in kidney transplants - a big data approach. Am. J. Transplant. 16(SI), 314 (2016)Google Scholar
  19. 19.
    Linda, S., Bharadwaj, K.K.: A fuzzy trust enhanced collaborative filtering for effective context-aware recommender systems. In: Satapathy, S.C., Das, S. (eds.) Proceedings of First International Conference on Information and Communication Technology for Intelligent Systems: Volume 2. SIST, vol. 51, pp. 227–237. Springer, Cham (2016). Scholar
  20. 20.
    Mettouris, C., Achilleos, A.P., Papadopoulos, G.A.: A context modelling system and learning tool for context-aware recommender systems. In: Hernández-Leo, D., Ley, T., Klamma, R., Harrer, A. (eds.) EC-TEL 2013. LNCS, vol. 8095, pp. 619–620. Springer, Heidelberg (2013). Scholar
  21. 21.
    Cheng, Z., Shen, J.: On effective location-aware music recommendation. ACM Trans Inf. Syst. 34(2) (2016). Article No. 13MathSciNetCrossRefGoogle Scholar
  22. 22.
    Baltrunas, L., Amatriain, X.: Towards time-dependent recommendation based on implicit feedback. In: Proceedings of RecSys 2009 Workshop on CARS (2009)Google Scholar
  23. 23.
    van Setten, M., Pokraev, S., Koolwaaij, J.: Context-aware recommendations in the mobile tourist application COMPASS. In: De Bra, P.M.E., Nejdl, W. (eds.) AH 2004. LNCS, vol. 3137, pp. 235–244. Springer, Heidelberg (2004). Scholar
  24. 24.
    Liu, D., Meng, X.W., Chen, J.L.: A framework for context-aware service recommendation. In: Proceedings of IEEE ICACT, pp. 2131–2134 (2008)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2019

Authors and Affiliations

  1. 1.College of Information and Electrical EngineeringChina Agricultural UniversityBeijingChina
  2. 2.National Engineering Research Center for Information Technology in AgricultureBeijingChina
  3. 3.Beijing Research Center for Information Technology in AgricultureBeijing Academy of Agriculture and Forestry SciencesBeijingChina

Personalised recommendations