Advertisement

A Review on the Soil Moisture Prediction Model and Its Application in the Information System

  • Wengang Zheng
  • Lili Zhangzhong
  • Xin Zhang
  • Caiyuan Wang
  • Shirui Zhang
  • Shijun Sun
  • Hongfei NiuEmail author
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 545)

Abstract

Soil moisture as an important parameter index in agricultural production is not only concerned with agricultural production, but also plays an important role in alleviating water shortage. This paper analyzes the principle of moisture content prediction, reviews the study of soil moisture prediction in different scales, lists the applications of moisture content prediction in practice and prospects the development trend of moisture content prediction.

Keywords

Soil moisture Prediction principle Predicting scales Practical application Development trend 

Notes

Acknowledgement

The research was supported by the National Key Research and Development Program of China (2016YFC0403102), the Innovation ability construction project of Beijing academy of agriculture and forestry sciences (KJCX20170204) and (KJCX20151411), and Beijing postdoctoral training fund.

References

  1. 1.
    China Water Resources Bulletin 2016 [DB/OL]. http://www.mwr.gov.cn/sj/#tjgb
  2. 2.
    National Bureau of Statistics of the People’s Republic of China [DB/OL]. http://data.stats.gov.cn/easyquery.htm?cn=C01
  3. 3.
    Li, M., Liu, Z.: Application of soil water balance model in soil moisture prediction. Water Resour. Hydropower Northeast China 23(246), 49–51 (2005)Google Scholar
  4. 4.
    Kang, S., Zhang, F., Liang, Y.: Research on the forecast method of soil water dynamic process in corn-land. Acta Ecol. Sin. 17(3), 245–251 (1997)Google Scholar
  5. 5.
    Pu, S., He, X., He, C., et al.: Study on soil moisture forecast method based on exponential depletion relations for cotton drip irrigation under Mulch in Xinjiang autonomous region. Water-Saving Irrig. 8, 5–7 (2008)Google Scholar
  6. 6.
    Bai, D., Guo, M., Guo, Z., et al.: Application of time series autoregressive model in soil moisture prediction. Soil Water Conserv. China 2, 42–46 (2014)Google Scholar
  7. 7.
    Zhang, D., et al.: Matlab Neural Network Application Design. China Machine Press, Beijing (2012)Google Scholar
  8. 8.
    Lewin, J.: A simple soil water simulation model for assessing the irrigation requirements of wheat. Israel J. Agric. Res. 22(4), 201–213 (1972)Google Scholar
  9. 9.
    Scott, C.A., Bastiaanssen, W.G.M., Ahmad, M.: Mapping root zone soil moisture using remotely sensed optical imagery. J. Irrig. Drainage Eng. 129(5), 326–335 (2003)CrossRefGoogle Scholar
  10. 10.
    Notarnicola, C., Angiulli, M., Posa, F., et al.: Soil moisture retrieval from remotely sensed data: neural network approach versus Bayesian method. IEEE Trans. Geosci. Remote Sens. 46(2), 547–557 (2008)CrossRefGoogle Scholar
  11. 11.
    Pandeya, A., Jhab, S.K., Srivastavac, J.K.: Artificial neural network for the estimation of soil moisture and surface roughness. Russ. Agric. Sci. 36, 428–432 (2010)CrossRefGoogle Scholar
  12. 12.
    Then, Y.L., You, K.Y., Dimon, M.N.: A modified microstrip ring resonator sensor with lumped element modeling for soil moisture and dielectric predictions measurement. Measurement 94, 119–125 (2016)CrossRefGoogle Scholar
  13. 13.
    Holland, J.E., Biswas, A.: Predicting the mobile water content of vineyard soils in New South Wales, Australia. Agric. Water Manag. 148, 34–42 (2015)CrossRefGoogle Scholar
  14. 14.
    Jin, L., Luo, Y., Miu, Q., et al.: Study of artificial neural network prediction model of soil moisture in farmland. Acta Pedol. Sin. 35(1), 25–32 (1998)Google Scholar
  15. 15.
    Hui, D., Yue, Z., Jun, Z., et al.: Application of support vector regression machines in soil moisture prediction based on bacteria foraging optimization algorithm. Bull. Soil Water Conserv. 36(6), 131–135 (2016)Google Scholar
  16. 16.
    Yang, S., Wang, Y., Guo, Z., et al.: Study of ARIMA model on soil moisture content prediction. Agric. Res. Arid Areas 24(2), 114–118 (2006)Google Scholar
  17. 17.
    Chen, C., Tan, J., Yin, J., et al.: Prediction for soil moisture in tobacco fields based on PCA and RBF neural network. Trans. CSAE 26(8), 85–90 (2010)Google Scholar
  18. 18.
    Ji, R., Zhang, S., Zheng, L., et al.: Prediction of soil moisture based on multilayer neural network with multi-valued neurons. Trans. Chin. Soc. Agric.Google Scholar
  19. 19.
    Ji, R., Li, X., Zhang, S., et al.: Short-term prediction of soil moisture in field based on GM(1, 1) model group. Trans. Chin. Soc. Agric. Mach. 47, 401–407 (2016)Google Scholar
  20. 20.
    Aboitiz, M., Labadie, J.W.: Stochastic soil moisture estimation and forecasting for irrigated fields. Water Resour. Res. 22, 180–190 (1986)CrossRefGoogle Scholar
  21. 21.
    Weimann, A., Von Schonermark, M., Schumann, A., et al.: Soil moisture estimation with ERS-1 SAR data in the East-German loess soil area. Int. J. Remote Sens. 19(2), 237–243 (1998)CrossRefGoogle Scholar
  22. 22.
    Elmaloglou, St., Malamos, N.: Simulation of soil moisture content of a prairie field with SWAP93. Agric. Water Manag. 43, 139–149 (2000)CrossRefGoogle Scholar
  23. 23.
    Sulebak, J.R., Tallaksen, L.M., Erichsen, B.: Estimation of a real soil moisture by use of terrain data. Geogr. Ann. 82(1), 89–105 (2000)CrossRefGoogle Scholar
  24. 24.
    Yamaguchi, Y., Shinoda, M.: Soil moisture modeling based on multiyear observations in the Sahel. J. Appl. Meteorol. 41, 1140–1146 (2002)CrossRefGoogle Scholar
  25. 25.
    Jiang, H., Cotton, W.R.: Soil moisture estimation using an artificial neural network: a feasibility study. Can. J. Remote Sens. 30(5), 827–839 (2004)CrossRefGoogle Scholar
  26. 26.
    Elshorbagy, A., Parasuraman, K.: On the relevance of using artificial neural networks for estimating soil moisture content. J. Arid Land 362, 1–18 (2008)Google Scholar
  27. 27.
    Cafarelli, B., Castrignanò, A., De Benedetto, D., et al.: A linear mixed effect (LME) model for soil water content estimation based on geophysical sensing: a comparison of an LME model and kriging with external drift. Environ. Earth Sci. 73, 1951–1960 (2015)CrossRefGoogle Scholar
  28. 28.
    Chen, M., Willgoose, G.R., Saco, P.M.: Spatial prediction of temporal soil moisture dynamics using HYDRUS-1D. Hydrol. Process. 28, 171–185 (2014)CrossRefGoogle Scholar
  29. 29.
    Liu, H., Wu, W., Wei, C.: Study of soil water forecast with neural network. J. Soil Water Conserv. 17(5), 59–62 (2003)Google Scholar
  30. 30.
    Li, A., Yang, W., Lu, J.: Spatial analysis methods and application of regional soil moisture. Chin. Agric. Sci. Bull. 28(21), 311–316 (2012)Google Scholar
  31. 31.
    Zhang, X., Li, R., Jiao, M., et al.: Research and development of soil moisture monitoring and forecasting system in farmland. Trans. Chin. Soc. Agric. Eng. 32(18), 140–146 (2016)Google Scholar
  32. 32.
    Wang, S., Fu, Z., Chen, H., et al.: Using gene-expression programming method and geographical location information to simulate evapotranspiration in Hunan and Hubei Provinces. Chin. J. Eco-Agric. 23(4), 490–496 (2015)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2019

Authors and Affiliations

  • Wengang Zheng
    • 1
  • Lili Zhangzhong
    • 1
  • Xin Zhang
    • 1
  • Caiyuan Wang
    • 2
  • Shirui Zhang
    • 1
  • Shijun Sun
    • 4
  • Hongfei Niu
    • 3
    Email author
  1. 1.National Engineering Research Center for Intelligent Equipment in AgricultureBeijing Academy of Agriculture and Forestry SciencesBeijingChina
  2. 2.Beijing Water-Affair AuthorityBeijingChina
  3. 3.Liaoning Water Conservancy Vocational CollegeShenyangChina
  4. 4.College of Water ConservancyShenyang Agricultural UniversityShenyangChina

Personalised recommendations